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Institutional Brokerage Networks:
Facilitating Liquidity Provision

Abstract

We argue institutional brokerage networks facilitate liquidity provision and mitigate price
impact of large non-information motivated trades. We use commission payments to map
trading networks of mutual-funds and brokers. We find central-funds outperform peripheral-
funds, especially in terms of return gap. Outperformance is more pronounced when trading is
primarily liquidity driven to accommodate large redemptions. The fund–centrality premium is
enhanced by brokers’ incentives to generate greater commissions and by trading relationships
between brokers and funds. Exploiting large brokerage mergers as exogenous shocks to network
structure, we show that shocks to network centrality are accompanied by predicted changes in
return gap.

Keywords: Institutional brokerage networks, mutual funds, return gap, trading costs,
liquidity provision
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1 Introduction

Brokers play a vital role in institutional trading in equity markets. When executing large client

orders, brokers can mitigate price impact by actively searching for potential counterparties across various

trading venues and, on occasion, by committing their own capital and acting more as dealers. Brokers

often break up their clients’ large orders and then strategically reveal to other clients who may be willing to

fill the orders, while concealing from those who might front-run them (see Harris (2002) for an overview).

Thus, trading between institutional investors tends to be broker-intermediated, with its efficacy closely

tied to the trading networks of institutional investors and their brokers. In this paper, we argue that

institutional brokerage networks facilitate liquidity provision and mitigate price impact for non-information

driven trades.

Using brokerage commission payments, we map trading networks of mutual funds and their brokers as

affiliation networks in which mutual funds are connected through their overlapping brokerage relationships.

In these networks, mutual funds that trade through brokers that are also heavily used by other funds will

tend to be more central. A key finding of the paper is that central funds in institutional brokerage networks

outperform peripheral funds, especially as measured by their trading performance. In order to shed light on

the specific mechanisms driving the positive relation between mutual funds’ brokerage network centrality

and their trading performance i.e., fund–centrality premium, we propose a liquidity provision hypothesis.

Our notion is that centrality in brokerage networks is especially valuable when mutual funds are

forced to trade for liquidity reasons. As is well-recognized, open-end mutual funds incur substantial trad-

ing costs due to the adverse market impact of their trades when they liquidate holdings in response to

investor redemptions (e.g., Edelen (1999)). In market microstructure models (such as Glosten and Mil-

grom (1985), Kyle (1985)), risk-neutral market makers are unable to identify trading motives. In these

models, market makers set market prices and expect to lose to informed traders, while breaking even with

gains from uninformed, liquidity traders. Thus, as in Admati and Pfleiderer (1991), liquidity traders who

are transacting large quantities for non-informational reasons have an incentive to make their trading in-

tentions known (i.e., engage in “sunshine trading”) to distinguish themselves from informed traders and
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attract more traders to provide liquidity.1 While large liquidity traders may be unable to signal their

trading motives directly to market participants, our view is that they might achieve the desired outcome

by relying on their brokerage network and upstairs block trading.

We contend that institutions trading for liquidity reasons may be able to credibly convey their trading

motives to brokers with whom they have well-established relationships. The credibility of a mutual fund

will be enhanced if misrepresentation of its trading motives is likely to be costly in terms of a loss of

reputation capital and trust in the broker-institution relationship. Central funds, connected to a larger

network of brokers and funds will have more at risk in terms of potential loss of reputation and, hence, are

likely to have greater credibility. The fund’s brokers, in turn, could certify their clients’ liquidity motives

and execute trades at better prices (Seppi (1990)).2 In addition, upstairs brokers can expand the available

liquidity pool using information about their clients’ latent trading interests and reaching out to wider set

of potential counterparties to lower trading costs (Grossman (1992)).3 Thus, even though all funds may

have similar access to the available pool of expressed liquidity, for instance, through an electronic limit

order book in the downstairs market, central funds will be better positioned to tap into larger pools of

unexpressed liquidity through their brokers, especially when submitting large blocks of liquidity-motivated

orders.4

1 A concern, however, is that strategic traders that become aware of, say, a large liquidation could engage in
“predatory trading”, an argument advanced in Brunnermeier and Pedersen (2005). The notion is that strategic
traders would trade the asset in the same direction prior to or simultaneously with the liquidating trader, before
subsequently reversing the trade, to profit from the price impact at the expense of the liquidating trader. Bessem-
binder et al. (2016), however, show that traders supply liquidity to rather than exploit predictable trades in resilient
markets and provide empirical evidence that a larger number of individual trading accounts provide liquidity around
the time of large and predictable futures “roll” trades undertaken by a large exchange-traded fund (ETF) designed
to provide returns that track crude oil prices.

2 An upstairs market is an off-exchange market where a block broker facilitates the trading process by locating
counterparties to the trade, and it operates as a search-brokerage mechanism where the terms of trade are determined
through negotiation. Madhavan and Cheng (1997), Smith, Turnbull, and White (2001), and Booth et al. (2002)
present evidence consistent with the Seppi (1990) hypothesis that upstairs market makers effectively screen out
information-motivated orders and execute large liquidity-motivated orders at a lower cost than the downstairs market
in the New York Stock Exchange (NYSE), the Toronto Stock Exchange (TSE), and the Helsinki Stock Exchange
(HSE), respectively.

3 Bessembinder and Venkataraman (2004) present direct evidence in support of the Grossman (1992) prediction
that upstairs brokers lower execution costs by tapping into unexpressed liquidity. The authors find that execution
costs for upstairs trades on the Paris Bourse are much lower than would be expected if the trades were executed
against the expressed (displayed and hidden) liquidity in the downstairs limit order book.

4 In a related literature on inter-dealer networks in the over-the-counter (OTC) municipal bond market, Li and
Schürhoff (Forthcoming) find that dealers that are more central in the networks have better access to clients and more
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Liquidity traders may have their own concerns about revealing their trading intentions to brokers.

In the context of outflow-driven fire sales, Barbon et al. (Forthcoming) document that institutional brokers

appear to foster predatory trading by leaking their clients’ order flow information about impending fire sales

to other important clients. These clients then sell the stocks being liquidated – only to buy them back later

at lower prices. Our view is that while brokers may occasionally disclose client trades, they are unlikely

to do so against their important clients, if it puts their trading relationships in jeopardy. Institutional

investors would share trading intentions only if brokerage firms had valuable reputation capital: capital

that could be lost if brokers did not act in their clients’ interests. A broker disclosing client information

faces the risk of being readily detected due to, for instance, the visibility of the price impacts (see, e.g.,

Smith, Turnbull, and White (2001)). In a broader context, our contention is that brokers will tend to

use information about large liquidity-motivated orders to mitigate trading costs associated with adverse

selection and invite more traders to provide liquidity, especially when the brokers’ reputation costs are

sufficiently high. The brokers used by central funds are apt to have greater reputation capital as indicated,

for instance, by their well-established relationships to many other funds (and greater costs to being seen

as untrustworthy). Hence, central funds are likely to benefit from lower costs for their liquidity motivated

trades.5

To test our liquidity provision hypothesis, we exploit a unique dataset on brokerage commissions for

a comprehensive sample of mutual funds from Form N-SAR semi-annual reports filed with the Securities

and Exchange Commission (SEC). Using techniques from graph theory, we map the connections between

mutual funds and their brokers as affiliation networks represented by weighted bi-partite graphs.6 The

information about which securities are available and who wants to buy or sell, which results in shorter “intermediation
chains,” i.e., that fewer dealers are involved before a bond is transferred to another customer.

5 Our paper is complementary to Barbon et al. (Forthcoming) in the sense of Carlin, Lobo, and Viswanathan
(2007), who present a multi-period model of trading based on liquidity needs. In their model, traders cooperate most
of the time through repeated interaction, providing liquidity to one another. However, “episodically” this cooperation
breaks down when the stakes are high enough, leading to predatory trading.

6 In affiliation networks, members are connected with one another through the organizations to which they belong.
One can imagine, for instance, how movie stars are connected to one another through the movies in which they have
co-appeared. Affiliation networks can be represented by bi-partite graphs, which have two types of nodes with
one node of one type only connected to another node of a different type. In our case, a mutual fund is directly
connected to its brokers and any pair of mutual funds can be connected with each other only indirectly through
their overlapping brokerage connections. The connection between two funds is stronger if the extent to which their
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weight of the bi-partite graph represents the strength of connection between a given fund-broker pair and

is calculated as a fraction of brokerage commissions paid to the given broker. Further, to measure mutual

funds’ brokerage network centrality, we reduce this bi-partite graph of funds and brokers into a mono-

partite graph in which fund-to-fund links are operationalized through their overlapping broker ties. We

then use degree centrality and eigenvector centrality to quantify the importance of a given fund’s position

in the network.

Mutual funds that trade through many brokers that many other funds also trade through tend to

be central in the network. Goldstein et al. (2009) note that most institutions concentrate their order flows

with a small number of brokers in order to become their important clients, whereas large institutions can

easily obtain the premium status from most brokers. Consistent with this observation, we find that funds

that are large or belong to large fund families tend to be more central in the network, as they can afford

to trade through a large number of brokers that are themselves central in the network.7 We also find that

mutual funds’ brokerage network centrality is highly persistent, reflecting the persistence in the underlying

brokerage relationships.

We begin our empirical analysis by showing that mutual funds’ brokerage network centrality pos-

itively predicts their trading performance. Since we do not directly observe trading activities of mutual

funds, we use as our measure of trading performance the return gap, which is calculated as the difference

between the reported fund return and the return on a hypothetical portfolio that invests in the previously

disclosed fund holdings (Grinblatt and Titman (1989), Kacperczyk, Sialm, and Zheng (2008)). We find

that mutual funds in the highest quintile of brokerage network centrality have average monthly return

gaps that are about five basis points larger than mutual funds in the lowest quintile over the period from

July 1994 to December 2016. The results are statistically significant, insensitive to the choice of centrality

measures, and robust to risk adjustments.

The economic magnitude of the relation between brokerage network centrality and return gap is

brokerage connections overlap is larger.
7 However, other fund characteristics do not explain much of variation in brokerage network centrality. In contrast,

fixed-effects, especially fund fixed-effects, account for a large amount of variation in brokerage network centrality,
suggesting that we can identify the network effects that are orthogonal to the size effects.
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meaningful as well. To put the numbers in perspective, we find that the return gap differential between

the highest and lowest quintile portfolios sorted on brokerage network centrality is nearly half as large as

that sorted on past return gap (Kacperczyk, Sialm, and Zheng (2008)). Furthermore, in our sub-sample

analysis, we find that the fund–centrality premium is economically large and statistically significant in both

early (1994-2007) and later (2008-2016) periods. This suggests that even in today’s fragmented market

with dark pools and smart order-routing systems, upstairs trading and institutional brokerage networks

remain highly relevant to large institutional investors, as reported in the Wall Street Journal.8

In order to understand the specific mechanisms driving the return–gap premium associated with

mutual funds’ brokerage network centrality, it is useful to recognize key factors affecting the return gap.

The return gap was originally proposed by Grinblatt and Titman (1989) as a measure of total transactions

costs for mutual funds. Thus, at first brush, the fund–centrality premium is pretty much in line with our

hypothesis that institutional brokerage networks mitigate mutual fund trading costs. Grinblatt and Titman

(1989), however, point out that the return gap may be affected by interim trades within a quarter (Puckett

and Yan (2011)) and possibly window-dressing activities. Kacperczyk, Sialm, and Zheng (2008) further

note that skilled fund managers can use their informational advantage to time the trades of individual

stocks optimally and show that the past return gap helps predict fund performance.9

We also recognize that the network formation is likely endogenous.10 In order to rule out potential
8 “‘Upstairs’ Trading Draws More Big Investors,” by Bradley Hope, the Wall Street Journal, December 8, 2013.

The article quotes a trader as stating that “It’s like trying to fill up your gas tank, but you have to go to 15 gas
stations. By the time you get to the 15th one, they’ve increased the price because they’ve heard you were coming.
Wouldn’t someone rather go to two or three stations and fill up the tank in blocks?”

9 It may seem plausible as an alternative hypothesis that central funds can acquire privileged information about
company fundamentals through their strong brokerage connections and trade on it. Put it differently, under the
information channel hypothesis, the positive relation between brokerage network centrality and return gap could be
driven by interim trades within a quarter, rather than trading costs. As we will show in our subsequent analyses,
however, the fund–centrality premium is more pronounced when funds’ trading activities are largely driven by
liquidity reasons, rather than information motivated.

10 For instance, marginal benefits of brokerage networks are likely higher for better skilled ones, fund managers
with superior trading skills might self-select into central positions in institutional brokerage networks. There might
exist an unobservable (to the econometrician) factor that is correlated with both brokerage network centrality and
return gap. For instance, Anand et al. (2012) show that institutional trading costs are closely linked to trading
desks’ execution skills over and above selecting better brokers. In Section 5, we provide evidence supportive of our
causal interpretation that institutional brokerage networks improve institutional trading performance, by exploiting
mergers of large brokerage houses as plausibly exogenous shocks to the network structure.
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confounding factors, we use panel regressions with fund fixed-effects to control for fund characteristics

and unobserved heterogeneity. Consistent with our time-series results, we continue to find robust evidence

that brokerage network centrality positively predicts future return gap, even after controlling for fund

characteristics, including past return gap, and fund fixed-effects.

Now we turn to testing key predictions of our liquidity provision hypothesis. The primary prediction

that we can derive from our hypothesis is that the fund–centrality premium should be more pronounced

when funds’ trading activities are largely driven by liquidity motives and funds can credibly signal this to

their brokers. We use large outflow events to identify such periods of liquidity-motivated trading. When a

mutual fund is experiencing severe redemptions, the fund is forced to liquidate a large fraction of its holdings

in several stocks and their selling is, to a large extent, uninformed (see, e.g., Coval and Stafford (2007),

Alexander, Cici, and Gibson (2007)). In addition, such forced liquidations are likely to send a particularly

strong signal to the brokers that its sell orders are driven by liquidity reasons, rather than information

motivated, thus helping the brokers communicate more credibly with other institutional clients to take the

other end of the trades. Consistent with this prediction, we find that the fund–centrality premium is more

pronounced when funds are forced to unwind their positions to accommodate large outflows.11

Second, our liquidity provision hypothesis also requires an active role on the part of brokers, such as

in discerning their clients’ uninformed trading motives and communicating with other institutional clients.

As made clear in Carlin, Lobo, and Viswanathan (2007), whether the brokers facilitate liquidity provision

or foster predatory trading is likely to hinge on the incentives they face and the strength of repeated

interaction with their clients. To the extent that brokers are incentivized to maximize the expected

value of future commission revenue streams, central funds with greater commission revenue generating

potential are most likely to benefit from liquidity provision facilitated by their brokers. Using aggregate
11 One potential concern is that the above results could be also consistent with cross-subsidization within a fund

family: when a fund is suffering severe redemptions, another fund in the same family could step in to provide
liquidity. For instance, Bhattacharya, Lee, and Pool (2013) show that affiliated funds of mutual funds that invest
only in other funds within the family provide an insurance pool against temporary liquidity shocks to other funds in
the family. This alternative cross-subsidization hypothesis may seem plausible because we find that funds that belong
to large families are more central and large fund families are likely better equipped to provide cross-subsidization.
Nevertheless, we continue to find qualitatively similar results when we exclude funds that belong to large fund
families.
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brokerage commissions as a proxy for the broker’s incentives, we find that the fund–centrality premium

is more pronounced for the funds that are likely more valuable for the brokers. Furthermore, we find

that the effect of brokers’ incentives on the fund–centrality premium is further amplified when funds are

experiencing severe investor redemptions.

Third, our hypothesis relies on the repeated nature of interaction between institutional clients and

their brokers. Institutional investors must build reputation for being truthful in order to credibly signal

liquidity motives for their uninformed orders to their brokers. The brokers, in turn, must develop their

reputation capital for being discreet when handling their clients’ orders. Thus, the signaling and certi-

fication of uninformed trading motives is likely most effective if funds have already built strong trading

relationships their brokers. Consistent with this prediction, we find that the fund–centrality premium is

larger for the clients that have stronger existing trading relationships with their brokers, especially when

funds are forced to liquidate to accommodate large outflows.12

One could still argue that central funds can obtain the return–gap premium because central funds can

more easily slice up large orders and spread across many brokers who can then further split their clients’

orders across many counterparties. Although not mutually exclusive with this alternative hypothesis, our

liquidity provision hypothesis has clear predictions about the relation between the fund–centrality premium

and the information content of trading. We provide further evidence that the fund–centrality premium is

mostly concentrated in the periods that can be characterized by uninformed trading activities, e.g., when

funds are trading with flows, rather than against flows. In addition, the fund–centrality premium is further

amplified when the orders are also likely larger, suggesting that central funds can obtain the return–gap

premium when central funds submit large uninformed orders.

Before concluding, we provide evidence supportive of our causal interpretation that institutional

brokerage networks improve institutional trading performance, by exploiting mergers of large brokerage

houses as plausibly exogenous shocks to the network structure. Following Hong and Kacperczyk (2010),
12 This result is also consistent with that found in a related literature on client-dealer networks. For instance, Di

Maggio, Kermani, and Song (2017) show that prior trading relationships are valuable especially in turbulent times
in the OTC corporate bond market
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we are able to identify and match a total of 26 brokerage mergers with our N–SAR data during the period

from 1995 to 2015. The shock strength, however, is a major concern for our natural experiment, given the

complexity of our network structure (which typically consists of thousands of nodes connected by tens of

thousands of edges). In other words, moderate-sized brokerage mergers, especially as stand-alone events

(which amount to cutting a small number of edges connected to a single node), are unlikely to serve as

meaningful shocks. Therefore, we focus on two waves of five largest mergers of institutional brokers that

took place around 2000 and 2008.13

Another challenge for our natural experiment is that the treatment of a shock is a priori unclear.

However, we can reason that funds that traded largely through the acquiring brokers but not heavily though

the target brokers are most likely to benefit from exogenous shocks to the network, since the acquiring

broker would retain at least some of the target broker’s clients. Following this intuition, we first construct

hypothetical post-merger brokerage networks as would be formed if every fund were to maintain its pre-

merger brokerage relationships and the funds hiring target brokers were to simply redistribute commissions

to their remaining brokers on a pro-rata basis.14 We then estimate the expected change in brokerage

network centrality for each fund by calculating the difference between its hypothetical post-merger network

centrality and its actual pre-merger network centrality. We take top ten percent of funds with largest

expected change as the treatment group. Using a difference-in-differences (DiD) with matching, we find

that funds in the treatment group experience significant increases in both brokerage network centrality and

return gap after the merger relative to a control group of funds. These findings provide plausible evidence

that institutional brokerage networks have a causal impact on institutional trading performance.

The remainder of this paper is organized as follows. In the next section, we discuss our paper in the

context of related literature. Section 3 introduces our data and describes how we construct networks. We

report our main results in Section 4 and conduct a natural experiment in Section 5. Section 6 concludes.
13 These five brokerage mergers include Credit Suisse First Boston (CFBS)’ acquisition of Donaldson, Lufkin &

Jenrette (DLJ) and UBS’s acquisition of Paine Webber in 2000 and JP Morgan Chase’s acquisition of Bear Stearns,
Barclays’ acquisition of Lehman Brothers, and Bank of America’s acquisition of Merrill Lynch in 2008.

14 In our status-quo assumption, the funds that did not trade through the target broker (candidate treated funds)
do not change their brokerage relationships, as they don’t need to, but nonetheless experience exogenous increases in
brokerage network centrality after the merger, because other funds need to reconfigure their brokerage relationships.
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2 Related Literature

Our paper uncovers novel network effects in equity markets by documenting the return–gap premium

associated with mutual funds’ brokerage network centrality.15 We contribute to a growing literature on

broker-dealer networks in financial markets by shedding light on a unique role of institutional brokers in

facilitating liquidity provision through the network. Whereas there is a large literature on dealer networks

in over-the-counter (OTC) markets (see Section V. D of Bessembinder, Spatt, and Venkataraman (Forth-

coming) for a comprehensive survey), studies on broker networks in the stock market have been relatively

scant and our paper attempts to fill this gap.

In a recent paper, Di Maggio et al. (Forthcoming) shows that central brokers can extrapolate large in-

formed trades from order flows and selectively leak this information to their more important clients, thereby

facilitating “back-running” as described by Yang and Zhu (Forthcoming). Given such rent-extraction be-

havior, it is thus unclear whether central brokers can obtain “best execution” for their institutional clients.

Our paper shows that central funds that trade through many central brokers can obtain the return–gap

premium by effectively leveraging their strong brokerage connections to mitigate trading costs associated

with adverse selection. Our paper is consistent with a related literature on client-dealer networks in the

OTC corporate bond market. Hendershott et al. (2017) shows that many insurers use only one dealer,

but execution costs decrease as a non-monotone function of the network size until it reaches 20 dealers,

consistent with insurers trading off the benefits of relationship trading against dealer competition.

Our paper is related to, but differs from, recent studies that document evidence of information

flows or leakages from some clients to the others through the brokers. Chung and Kang (2016) shows

strong return comovement among hedge funds sharing the same prime broker and argue that the prime

broker provides profitable information to its hedge fund clients. As potential sources of such profitable

information, Kumar et al. (2018) points to privileged information on corporate borrowers from the affiliated
15 There has been a growing interest in studying network effects in equity markets. For instance, Ahern (2013)

shows that industries that are more central in intersectoral trade networks earn higher stock returns than industries
that are less central. Ozsoylev et al. (2014) estimate empirical investor networks using account-level trading data
from the Istanbul Stock Exchange and find that more central individual investors earn higher returns and trade
earlier than peripheral investors with respect to information events.
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banking division of an investment bank with prime brokerage business and Di Maggio et al. (Forthcoming)

hints at client order flow information about large informed trades by hedge funds or activist investors

right before 13D filings. Our paper, however, differs substantially from these papers in that our focus

is on information flows regarding large liquidity-motivated trades, rather than private information about

company fundamentals.16

Our paper is most closely related to Barbon et al. (Forthcoming) who document that institutional

brokers can foster predatory trading by leaking their clients’ order flow information about impending fire

sales to other important clients, such as prime brokerage hedge fund clients. The clients then sell the stocks

being liquidated along with the distressed funds only to buy them back later at much lower prices, thereby

exacerbating price impacts. Brokerage firms, however, value their reputation capital and institutional

clients can easily monitor whether a particular broker is acting in their interests thanks to the visibility

of the price impacts and the ongoing broker–client relationships (see, e.g., Smith, Turnbull, and White

(2001)).

In a broader context, we show that brokers tend to use information about large liquidity-motivated

orders to mitigate trading costs associated with adverse selection and invite more traders to provide

liquidity, especially when the brokers’ reputation costs are sufficiently high. Our paper is complementary

to Barbon et al. (Forthcoming) in the sense of Carlin, Lobo, and Viswanathan (2007), who present a

multi-period model of trading based on liquidity needs. In their model, traders cooperate most of the time

through repeated interaction, providing liquidity to one another. However, “episodically” this cooperation

breaks down when the stakes are high enough, leading to predatory trading.17

16 In a similar sense, our paper differs from the papers that shows how institutional investors can gain informational
advantage through their brokerage connections. Examples of such information channels include early access to sell-
side research or tipping (Irvine, Lipson, and Puckett (2007)) and invitations to broker-hosted investor conferences
(Green et al. (2014)).

17 Some investment banks generate a substantial amount of fee revenues from hedge funds that use their prime
brokerage services, such as securities lending, margin financing, and risk management. Consistent with high-powered
incentives of prime brokerage business, Kumar et al. (2018) find strong evidence that investment banks sometimes leak
privileged information about their corporate borrowers to their prime brokerage hedge fund clients who subsequently
trade on and profit from it, whereas Griffin, Shu, and Topaloglu (2012) find little evidence of such information-based
trading by the average brokerage house client of investment banks.
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3 Data and Variable Construction

Section 3.1 describes our primary data on brokerage commissions and explains how we construct

other fund-level variables. Section 3.2 explains how we construct institutional brokerage networks and

centrality measures, discusses the characteristics of the network, and examines the determinants of mutual

funds’ brokerage network centrality.

3.1 Brokerage Commissions and Other Fund-Level Variables

Our primary data comes from the SEC Form N–SAR filings, which we combine with other data sets.

We obtain data on mutual fund monthly returns, total net assets (TNA), and fund expenses from the

Center for Research in Security Prices (CRSP) Survivor-Bias-Free Mutual Fund Database. The returns

are net of fees, expenses, and brokerage commissions, but before any front-end or back-end loads. The

stock holdings of mutual funds are from Thomson-Reuter Ownership Database (Thomson s12). We use the

MFLINKS files available through Wharton Research Data Services (WRDS) to merge CRSP and Thomson

data sets. For funds with multiple share classes in CRSP, we aggregate share-class-level variables at the

fund-level by computing the sum of total net assets and the value-weighted average of returns and expenses.

Under the Investment Company Act of 1940, all registered investment companies are required to

file Form N–SAR with the SEC on a semi-annual basis. N–SAR reports are filed at the registrant level.

A registrant typically consists of a single mutual fund and thus is simply referred to as a fund in our

paper, except when the distinction is likely important.18 N–SAR filings disclose information about fund

operations and financials under 133 numbered items with alphabetized sub-items. We extract all N-SAR

reports filed between 1994 and 2016 available through the SEC’s Electronic Data Gathering, Analysis, and

Retrieval (EDGAR) system.
18 A registrant can consist of multiple funds or be part of a fund family, although it is just a single mutual fund in

about 65% of the N–SAR filings. We emphasize that a registrant does not refer to a fund family, but rather is a filing
unit under which a fund family reports its funds together in a single filing. For instance, according to our N–SAR
data, Fidelity reported its 466 mutual funds with about $1.5 trillion assets under management using 82 separate
N–SAR filings during the first half of 2016. Many items are reported at the fund level, but some of the items such
as brokerage commissions are aggregated and reported at the registrant level.
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Since our focus is on U.S. domestic equity funds, we exclude N-SAR funds that are not equity-

oriented (Item 66.A), international funds (Item 68.B), and the funds with percentage of TNA invested in

common stocks (Item 74.F divided by Item 74.T) below 80% or above 105%. We also exclude N-SAR

reports where aggregate brokerage commissions paid (Item 21) are reported as zero or missing.19 From the

CRSP–Thomson merged data set, we eliminate international, municipal, bonds and preferred, and metals

funds using the investment objective code from Thomson (ioc) and screen for U.S. domestic equity funds

using the investment objective code from CRSP (crsp obj cd). We also exclude all observations where the

fund’s TNA does not exceed $5 million or the number of stock holdings does not exceed 10.

After the above data screens, we automatically match N–SAR fund names (Item 1.A and a colon

followed by Item 7.C) with CRSP fund names after removing share-class identifiers using the generalized

Levenshtein (1966) edit distance while exploiting the typical structure of CRSP fund name (FUND FAMILY

NAME: FUND NAME; SHARE CLASS). In the automated name matching process, we require that the

monthly average net assets (TNA) during the reporting period (Item 75.B) and the corresponding TNA

value constructed from CRSP and MFLINKS be within the 5% range from each other. Finally, we manually

check the accuracy of the matches and remove the ones that appear inaccurate. The total number and

aggregate TNA of our CRSP–Thomson–NSAR matched sample funds are reported in Table A1 in the

Appendix.

Of particular interest to our study are brokerage commissions paid to the ten brokers that received

the largest amount from the fund during the reporting period and the names of those brokers (Item 20).

Table 1 provides an example of brokerage commission payments along with some descriptive statistics.

[Insert Table 1]

We recognize that N–SAR filings do not report all brokerage firms to which the fund paid commissions

and, as a result, we are likely to miss some of the less important brokerage connections. As an example,

Panel A of Table 1 reports brokerage commissions that T. Rowe Price Blue Chip Growth Fund paid to
19Reuter (2006) reports that in his sample, approximately 82% of the N-SAR filings that report paying no brokerage

commissions are from investment companies that consist solely of bond funds, which do not pay explicit brokerage
commissions on their transactions.
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its top ten brokers and the aggregate commissions paid to all brokers during the first half of 2016. As

is typically the case, the sum of brokerage commissions do not add up to the aggregate commissions,

suggesting that the fund employed more than ten brokers.20 In general, as shown in Panel B of Table 1,

brokerage commissions are highly concentrated with a few important brokers for each fund, but the top

ten brokers reported in N–SAR filings on average account for only 72.45% (or 71.62% at the median) of

the aggregate brokerage commissions that the fund paid to all brokers. Nevertheless, partial data issues

are unlikely to cause any bias in our results, since centrality calculated in the reduced network is highly

correlated with full-network centrality (Ozsoylev et al. (2014)).21

Panel C presents a transition probability matrix of annual changes in broker rankings for each fund

and shows strong persistence in brokerage relationships between a fund and its key brokers. If a broker is

ranked top this year by the commission payments, the probability of the same broker staying on top for the

same fund next year is close to 50%. As we move down the rankings, the persistence becomes gradually

weaker. The concentration of commissions with several important brokers and the persistence in business

relationships funds maintain with those brokers are generally in line with the literature on institutional

brokers (e.g., Goldstein et al. (2009)).

Next, we describe how we construct other fund-level variables. We take the fund TNA directly from

N–SAR (Item 74.T) and use the fund family code reported by the fund (Item 19.C) to calculate the fund

family TNA. The trading volume is calculated by the sum of purchases (Item 71.A) and sales (Item 71.B).

Since brokerage commissions are reported at the registrant level, we calculate the commission rate as a ratio

of the aggregate commission payments (Item 21) to the sum of aggregate trading volumes across all funds

reported together, following Edelen, Evans, and Kadlec (2012). This pro-rata algorithm implicitly assumes
20 Mutual funds and institutional investors typically employ a large number of brokers not only for daily trade

executions but also for various services that brokers provide, such as early access to sell-side research or tipping
(Irvine, Lipson, and Puckett (2007)), favorable allocations of hot IPO stocks (Reuter (2006)), invitations to broker-
hosted investor conferences (Green et al. (2014)), and marketing and retail distribution support (Edelen, Evans, and
Kadlec (2012)).

21 For example, in simulations Ozsoylev et al. (2014) show that even when a reduced network represents only
10% of the links in the full network, the correlation between true centrality and centrality calculated in the reduced
network is about 0.5. In our study, the reduced network typically represents more than 70% of the weighted links in
the full network that be constructed from the complete information on commissions paid to all brokers.
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the commission rates to be the same for all the funds of which a registrant consists. In a similar spirit,

we estimate the fund’s commission payments by taking the product of the commission rate and the fund

trading volume. We take an index fund indicator from N–SAR (Item 69). For each fund-quarter, size, value,

and momentum percentiles are calculated as percentiles of market capitalization, book-to-market ratio, and

12-month returns skipping the most recent month, respectively, averaged across all stock holdings. For each

fund-halfyear, we take the most recent quarterly observation of average size-value-momentum percentiles.

Last, following the literature (e.g., Coval and Stafford (2007)), we calculate monthly net flows for

each fund share class i during month t as follows:

FLOWi,t = TNAi,t − TNAi,t−1 × (1 +Ri,t) (1)

where FLOW i,t is the dollar value of fund flow (net new issues and redemptions), TNAi,t is the total net

asset, and Ri,t is the monthly return. To compute the monthly fund flow for the fund, we sum monthly

fund flows for all share classes belonging to the same fund as identified by MFLINKS. Monthly fund flows

are summed over the half-year to calculate the semi-annual fund flow. For the percentage figures, we divide

the dollar value of fund flows by the beginning-of-period TNA. The summary statistics are reported in

Table 2.

[Insert Table 2]

3.2 Institutional Brokerage Networks

Using brokerage commission payments, we map trading networks of mutual funds and their brokers

as affiliation networks represented by weighted bi-partite graphs. In a graph, agents can be represented by

nodes and connections (ties) between agents by edges. In a bi-partite graph, nodes can be partitioned into

two types and nodes of one type can only be connected to the nodes of the other type, not with the ones

of the same type. Such bi-partite graphs are typically used to model affiliation networks where members

form networks through organizations to which they belong. We illustrate how we construct institutional

brokerage networks and calculate brokerage network centrality step-by-step using a simple example in
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Figure 1. Panel A of Figure 1 presents a graphical representation of the network consisting of ten funds

and four brokers.

[Insert Figure 1]

Like any graph, a bi-partite graph can be represented by an adjacency matrix, denoted G, where

rows index mutual funds and columns index brokers. Each element gi,k of G represents the strength of

connection between fund i and broker k and is defined as the brokerage commissions paid to broker k,

scaled by the sum of brokerage commissions paid to the top ten brokers. If broker k does not appear as

one of the top ten brokers for fund i, then gi,k is assumed zero. Panel B of Figure 1 shows the transpose

of the adjacency matrix G representing our simple network in extended-form.

To measure a mutual fund’s connections to all the other mutual funds through their overlapping

brokerage connections, we reduce the bi-partite graph of mutual funds and brokers into a mono-partite

graph of mutual funds only by defining its adjacency matrix A as

ai,j =
∑

k

min(gi,k, gj,k) if i 6= j (2)

where i and j index funds and k indexes brokers. The strength of connection between any pair of funds is

simply the percentage overlap (Jaccard distance) of brokerage connections between two funds. Panel C of

Figure 1 shows the adjacency matrix A representing our simple network in reduced-form. We emphasize

that the connections between funds are indirect and made through overlapping brokerage connections. For

instance, Fund 1 and Fund 2 are connected through Broker A and Broker B, and the strength of connection

between these two funds is 0.35 (= min(0.85, 0.20) + min(0.15, 0.33) + min(0, 0.22) + min(0, 0.25)).

We borrow techniques from graph theory and social network literature to quantify the importance of

a mutual fund’s position in the network. The importance of a node in a network is typically measured by

its centrality and we use degree centrality (Freeman (1979)) and eigenvector centrality (Bonacich (1972,

1987)).22 Degree centrality is defined as the sum of each row in the adjacency matrix, A, defining the
22 Many different measures of centrality have been proposed and among the most commonly used measures



INSTITUTIONAL BROKERAGE NETWORKS16

network, scaled by the number of rows minus one. Eigenvector centrality is defined as the principal

eigenvector of the adjacency matrix defining the network. That is,

λv = Av (3)

where A is the adjacency matrix of the graph, λ is a constant (the eigenvalue), and v is the eigenvector.

Panel D of Figure 1 reports brokerage network centrality calculated for all funds in our simple

network. For instance, degree centrality for Fund 1 is 0.339 (= (0.35 + 0.30 + 0.50 + 0.35 + 0.15 + 0.35 +

0.30 + 0.60 + 0.15)/9). As can be seen in Panel A of Figure 1, funds that are positioned in the center of

the network (e.g., 2, 3, and 5) are indeed more central than funds located in the periphery (e.g., 1, 4, and

10). In general, funds that trade through many brokers that many other funds also trade through tend to

be central in the network.

In order to line up with the semi-annual N–SAR reporting frequency, we construct networks every

half-year at the end of June (December) for N–SAR filings with reporting period ending in January to

June (July to December) from the first half of 1994 to the first half of 2016. Since brokerage commission

payments are only reported at the registrant level and are not broken down by fund, we construct networks

at the registrant level and all funds within the same registrant inherit the same network structure. Figure

2 shows institutional brokerage networks constructed using our N–SAR data for the first half of 2016.

[Insert Figure 2]

Now we examine what types of mutual funds are more central in institutional brokerage networks

of centrality are degree, closeness, betweenness, and eigenvector centrality. When choosing the most appropriate
measure, one must be careful about the implicit assumptions underlying these centrality measures. As laid out in
Borgatti (2005), closeness centrality and betweenness centrality are built upon an implicit assumption that traffic
flows along the shortest paths until it reaches a pre-determined destination like the package delivery process. In
institutional brokerage networks, traffic is likely to freely flow from one fund (the fund submitting a trade order) to
another (a potential fund that could absorb the submitted trade order) through the broker intermediating the trade.
Since this type of traffic must flow through unrestricted walks, rather than via geodesics, closeness centrality and
betweenness centrality can be safely ruled out. See also Ahern (2013) for a similar discussion.
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by estimating the following linear regression model:

Centralityi,t = γ × Covariatesi,t + αi + θt + εi,t (4)

where i indexes mutual funds and t indexes time in half-years. The dependent variable is Centralityi,t,

fund i’s brokerage network centrality measured at the end of half-year t. Covariatesi,t are a vector of

fund-level characteristics that include log of fund TNA, log of family TNA, expense ratio, commission rate,

trading volume, and average size-value-momentum percentiles of stock holdings, all measured at the end

of half-year t. αi denotes fund fixed-effects, θt denotes time fixed-effects, and standard errors are clustered

at the fund level.

Table 3 presents the regression results. The dependent variable is degree centrality in columns (1)

through (5) and eigenvector centrality in columns (6) through (10). Overall, we find that funds that are

large or belong to large fund families tend to be more central in the network, as these funds can afford to

trade through a large number of brokers that are themselves central in the network. This result suggests

that brokerage relationships are costly to build and is consistent with Goldstein et al. (2009) who note that

most institutions concentrate their order flows with a small number of brokers in order to become their

important clients, whereas large institutions can easily obtain the premium status from most brokers.

[Insert Table 3]

As can be seen in columns (1) and (6), fund and family sizes alone can explain 19% and 28% of

variation in degree centrality and eigenvector centrality, respectively. Adding other fund characteristics

in columns (2) and (7) only marginally improves the explanatory power, raising adjusted R2 to 26% and

31% for degree centrality and eigenvector centrality, respectively. In contrast, fixed-effects, especially fund

fixed-effects, account for a large amount of variation in brokerage network centrality, suggesting that we

can identify the network effects that are orthogonal to the size effects. Adding time and fund fixed-effects

in columns (5) and (10) raises adjusted R2 to 74% and 72% for degree centrality and eigenvector centrality,

respectively. This result also implies that brokerage network centrality is highly persistent, reflecting the
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persistence in the underlying brokerage relationships.

4 Brokerage Network Centrality and Trading Performance

In Section 4.1, we begin our empirical analysis by showing that mutual funds’ brokerage network

centrality predicts their trading performance as measured by return gap. In Section 4.2, we turn to

inspecting the specific mechanisms behind the return–gap premium associated with mutual funds’ brokerage

network centrality (simply the fund–centrality premium or the return–gap premium).

4.1 The Fund–Centrality Premium

4.1.1 The Time-Series Evidence

Despite extensive disclosure requirements, mutual funds are only required to disclose their holdings

on a quarterly basis and their trading activities are generally unobservable (Kacperczyk, Sialm, and Zheng

(2008)). In order to examine how institutional brokerage networks affect mutual fund trading performance,

we use the return gap as our measure of trading performance. The return gap is calculated as the difference

between the reported fund return and the return on a hypothetical portfolio that invests in the previously

disclosed fund holdings (Grinblatt and Titman (1989), Kacperczyk, Sialm, and Zheng (2008)):

Return Gapi,t = RETi,t − (HRETi,t − EXPi,t) (5)

where RET i,t, is the fund i’s reported return net of expenses during month t, EXPi,t, is the expense ratio

for fund i reported prior to month t, and HRET i,t is the fund i’s holdings return during month t, which is

defined as:

HRETi,t =
∑

k

wi,k,t−1Rk,t (6)

where wi,k,t−1 is the fund i’s portfolio weight on stock k at the end of month t− 1 and Rk,t is the return

on stock k during month t.
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At the end of every June and December, we sort mutual funds into quintile portfolios, based on their

brokerage network centrality. The average time-series monthly returns from July 1994 to December 2016

are reported in Table 4. The full-sample results reported in Panel A show that the average return gap

increases monotonically from the portfolio of peripheral funds (the lowest quintile of brokerage network

centrality) to the portfolio of central funds (the highest quintile). The difference in average return gaps

between central funds and peripheral funds is about five basis points per month (t-statistic = 5.03 to 5.26).

After adjusting for the Fama–French–Carhart four–factor loadings, the central–minus–peripheral portfolio

delivers an average alpha of four basis points per month (t-statistic = 4.48 to 4.75).

[Insert Table 4]

The economic magnitude of the relation between brokerage network centrality and return gap is

meaningful as well. To put the numbers in perspective, we find that the return gap differential between the

highest and lowest quintile portfolios sorted on brokerage network centrality is nearly half as large as that

sorted on past return gap (Kacperczyk, Sialm, and Zheng (2008)). Furthermore, in our sub-sample analysis,

we find that the fund–centrality premium is economically large and statistically significant in both early

(1994-2007) and later (2008-2016) periods reported in Panel B and Panel C, respectively. This suggests

that even in today’s fragmented market with dark pools and smart order-routing systems, upstairs trading

and institutional brokerage networks remain highly relevant to large institutional investors, as reported in

the Wall Street Journal.23

4.1.2 The Cross-Sectional Evidence

In order to understand the specific mechanisms driving the return–gap premium associated with bro-

kerage network centrality, it is important to recognize key factors affecting the return gap. The return gap

is originally proposed by Grinblatt and Titman (1989) as a measure of total transactions costs for mutual

funds. Therefore, at first brush, the fund–centrality premium is very much in line with our hypothesis

that institutional brokerage networks mitigate mutual fund trading costs. Grinblatt and Titman (1989),
23 “‘Upstairs’ Trading Draws More Big Investors,” by Bradley Hope, the Wall Street Journal, December 8, 2013.
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however, point out that the return gap may be affected by interim trades within a quarter and possibly

window-dressing activities. Kacperczyk, Sialm, and Zheng (2008) further note that skilled fund managers

can use their informational advantage to time the trades of individual stocks optimally and show that the

past return gap helps predict fund performance.

We also recognize that the network formation is likely endogenous. For instance, marginal benefits

of institutional brokerage networks are likely higher for better skilled ones, fund managers with superior

trading skills might self-select into central positions in the network. There might also exist an unobservable

(to the econometrician) factor that is correlated with both mutual funds’ brokerage network centrality and

their trading performance. For example, Kacperczyk, Sialm, and Zheng (2008) document the persistence

in return gap and propose the return gap as a measure of interim trading skills of fund managers (see also

Puckett and Yan (2011)). Anand et al. (2012) show that trading costs are closely linked to trading desks’

execution skills over and above selecting better brokers.

In order to mitigate these confounding factors, we use cross-sectional regressions with fund fixed-

effects to control for unobserved heterogeneity along with observable fund characteristics. Specifically, we

estimate the following linear regression model:

Return Gapi,t = β × Centralityi,t−1 + γ × Covariatesi,t−1 + αi + θt + εi,t (7)

where i indexes mutual funds and t indexes time in half-years. The dependent variable is Return Gapi,t

which is fund i’s average return gap during half-year t. Centralityi,t−1 is fund i’s brokerage network

centrality measured at the end of half-year t− 1. Covariatesi,t−1 are a vector of fund-level characteristics

that include log of fund TNA, log of family TNA, expense ratio, commission rate, trading volume, and

average size-value-momentum percentiles of stock holdings, all measured at the end of half-year t − 1.

Depending on the specification, the regression includes fund fixed-effects ((αi)) and lagged return gap. All

regressions include time fixed-effects (θt) and standard errors are clustered at the fund level.

We present the regression results in Table 5. Columns (1) and (4) report our baseline specification

including fund characteristics and time-fixed effects. The coefficients on Centralityi,t−1 are all positive and
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statistically significant at 1% levels. Interestingly, the our main coefficients change little when we add

lagged return gap in columns (2) and (5). In the remaining columns, our main coefficients remain positive

and statistically significant even after the inclusion of fund fixed-effects, mitigating endogeneity concerns

that the fund–centrality premium could be driven by some unobserved heterogeneity.

[Insert Table 5]

Later in Section 5, we further address endogeneity concerns that could arise, for instance, from reverse

causality. By exploiting mergers of large brokerage houses as plausibly exogenous shocks to the network

structure, we provide evidence supportive of our causal interpretation that institutional brokerage networks

improve institutional trading performance. Next, we turn our attention to testing our our hypothesis that

institutional brokerage networks facilitate liquidity provision and mitigate trading costs associated with

adverse selection.

4.2 Inspecting the Mechanism

4.2.1 The Fund–Centrality Premium when Funds Experience Severe Redemptions

The primary prediction that we can derive from our hypothesis is that the fund–centrality premium

should be more pronounced when funds’ trading activities are largely driven by liquidity motives and funds

can credibly signal this to their brokers. We use large outflow events to identify such periods of liquidity-

motivated trading. When a mutual fund is experiencing severe redemptions, the fund is forced to liquidate

a large fraction of its holdings in several stocks and their selling is, to a large extent, uninformed (see,

e.g., Coval and Stafford (2007), Alexander, Cici, and Gibson (2007)). In addition, such forced liquidations

are likely to send a particularly strong signal to the brokers that its sell orders are driven by liquidity

reasons, rather than information motivated, thus helping the brokers communicate more credibly with

other institutional clients to take the other end of the trades.
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In order to test this prediction, we estimate the following linear regression model:

Return Gapi,t = δ × Centralityi,t−1 × 1(Outflowi,t > 5%) + β × Centralityi,t−1

+ ρ× 1(Outflowi,t > 5%) + γ × Covariatesi,t−1 + αi + θt + εi,t

(8)

where 1(Outflowi,t > 5%) is an indicator variable that is equal to 1 if fund i’s outflow during half-year

t exceeds five percent and the rest of the model is the same as in Equation (7). In some specifications,

we include fund fixed-effects (αi). All regressions include time fixed-effects (θt) and standard errors are

clustered at the fund level.

We present the regression results in Table 6. The dependent variable is degree centrality in columns

(1) and (2) and eigenvector centrality in columns (3) and (4). In the baseline specification without fund

fixed-effects in columns (1) and (3), the coefficients on Centralityi,t−1 and Centralityi,t−1 × 1(Outflowi,t >

5%) are all positive and statistically significant at 1% levels. These results suggest that central funds

tend to outperform peripheral funds in terms of return gap during normal times, but the fund–centrality

premium is more pronounced when funds are faced with large outflows.

[Insert Table 6]

Next, in columns (2) and (4), we add fund fixed-effects to our baseline specification to control for

unobserved heterogeneity such as trading skills of fund managers and execution skills of trading desks. By

exploiting within-fund variation in investor flows, we continue to find that the fund–centrality premium

is more pronounced when funds are forced to liquidate due to large outflows. As a robustness check, we

re-define a large outflow event as a half-year during which the fund’s outflow exceeds ten percent, instead of

five percent, and still obtain qualitatively similar results, reported in Panel A of Table A2 in the Appendix.

One potential concern is that the above results could be also consistent with cross-subsidization

within a fund family: when a fund is suffering severe redemptions, another fund in the same family

could step in to provide liquidity. For instance, Bhattacharya, Lee, and Pool (2013) show that affiliated

funds of mutual funds that invest only in other funds within the family provide an insurance pool against

temporary liquidity shocks to other funds in the family. This alternative cross-subsidization hypothesis
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may seem plausible because we find that funds that belong to large families are more central and large

fund families are likely better equipped to provide cross-subsidization. Nevertheless, we continue to find

qualitatively similar results when we exclude funds that belong to large fund families, reported in Panel B

of Table A2 in the Appendix.

Before we move on, we can further rule out another important alternative hypothesis. Many studies

on brokerage connections have focused on various information channels.24 Thus, it may seem plausible that

central funds can acquire privileged information through their strong brokerage connections and trade on it.

Our evidence, however, is at odds with this alternative information channel hypothesis: the fund–centrality

premium is more pronounced when funds’ trading activities are largely driven by liquidity reasons, rather

than information motivated. We provide further evidence along this line in Section 4.2.4.

4.2.2 The Fund–Centrality Premium for Valuable Clients

Second, our liquidity provision hypothesis requires an active role on the part of brokers, such as in

discerning their clients’ uninformed trading motives and communicating with other institutional clients.

As made clear in Carlin, Lobo, and Viswanathan (2007), whether the brokers facilitate liquidity provision

or foster predatory trading is likely to hinge on the incentives they face and the strength of repeated

interaction with their clients. To the extent that brokers are incentivized to maximize the expected value

of future commission revenues, central funds with greater revenue generating potential for brokers are

most likely to benefit from liquidity provision facilitated by their brokers. In addition, combined with

our primary prediction, the effect of brokers’ incentives on the fund–centrality premium should be further

amplified when funds are forced to liquidate in order to accommodate severe redemptions.

In order to test these predictions, we first interact a proxy for brokers’ incentives with brokerage
24 Such information channels include, but not limited to, early access to sell-side research or tipping (Irvine, Lipson,

and Puckett (2007)), invitations to broker-hosted investor conferences (Green et al. (2014)), and information leakages
on company fundamentals, especially in the context of hedge funds and their prime brokers (Chung and Kang (2016),
Kumar et al. (2018), Di Maggio et al. (Forthcoming))
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network centrality and estimate the following linear regression model:

Return Gapi,t = δ × Centralityi,t−1 × Broker Incentivei,t−1 + β × Centralityi,t−1

+ ρ× Broker Incentivei,t−1 + γ × Covariatesi,t−1 + αi + θt + εi,t

(9)

where Broker Incentivei,t−1 is our proxy for brokers’ incentives as measured by fund i’s aggregate dollar

commissions during half-year t− 1 and the rest of the model is the same as in Equation (7).

We present the regression results in Panel A of Table 7. In columns (1) and (2), Broker Incentivei,t−1

is an indicator variable that is equal to one if fund i’s aggregate dollar commissions during half-year t− 1

is greater than its top quartile value. Consistent with our prediction that brokers’ incentives drive up

the fund–centrality premium, we find a positive and statistically significant coefficient on Centralityi,t−1 ×

Broker Incentivei,t−1. In contrast, the coefficients on Centralityi,t−1 are small and statistically insignificant,

suggesting that the fund–centrality premium is mostly accrued to central funds that are also likely valuable

for brokers. As a robustness check in columns (3) and (4), we replace an indicator variable with its

continuous counterpart, log of aggregate dollar commissions, for Broker Incentivei,t−1. We continue to

obtain qualitatively similar, albeit somewhat weaker, results that essentially brokers’ incentives drive up

the fund–centrality premium.

[Insert Table 7]

Next, we add an indicator variable for contemporaneous large outflows as an additional interaction

term in Equation (9) and run triple interaction regressions. We present the results in Panel B of Table 7.

In all specifications, the coefficients on the triple interaction term, Centralityi,t−1×Broker Incentivei,t−1×

1(Outflowi,t > 5%), are positive and statistically significant at conventional levels. Overall, these results

suggest that the effect of brokers’ incentives on the fund–centrality premium is further amplified when

funds’ trading activities are largely driven by liquidity motives and funds can credibly signal this to their

brokers.
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4.2.3 The Fund–Centrality Premium for Relationship Clients

Third, our hypothesis relies on the repeated nature of interaction between institutional clients and

their brokers. Institutional investors must build reputation for being truthful in order to credibly signal

liquidity motives for their uninformed orders to their brokers. The brokers, in turn, must develop their

reputation capital for being discreet when handling their clients’ orders. Thus, the signaling and certi-

fication of uninformed trading motives is likely most effective if funds have already built strong trading

relationships with their brokers.

In order to test this prediction, we interact a measure of existing trading relationships with brokerage

network centrality and estimate the following linear regression model:

Return Gapi,t = δ × Centralityi,t−1 × Trading Relationshipi,t−1 + β × Centralityi,t−1

+ ρ× Trading Relationshipi,t−1 + γ × Covariatesi,t−1 + αi + θt + εi,t

(10)

where Trading Relationshipi,t−1, or simply, Relationshipi,t−1 is our proxy for fund i’s strength of trading

relationships with its current set of brokers, as measured by taking the minimum of a fraction of fund i’s

commissions paid to its broker k during half-year t− 1 (current) and that during t− 3 (a year before) and

then summing it over all brokers currently employed by the fund. Intuitively, Relationshipi,t−1 measures

the extent (Jaccard distance) to which fund i’s current set of brokers overlap with the set of brokers the

fund traded through a year before. The rest of the model is the same as in Equation (7).

We present the regression results in Panel A of Table 8. We find some evidence that trading rela-

tionships drive up the fund–centrality premium. In all specifications, the coefficients on Centralityi,t−1 ×

Trading Relationshipi,t−1 are positive, but statistically significant only in columns (3) and (4) when we use

eigenvector centrality. These somewhat weaker results, however, are not inconsistent with our liquidity

provision hypothesis, which predicts that the fund–centrality premium is primarily driven by liquidity-

motivated trades.

[Insert Table 8]

To test whether trading relationships drive up the fund–centrality premium especially in periods of
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heavy liquidity-motivated trades, we add an indicator variable for contemporaneous large outflows as an

additional interaction term in Equation (10) and run triple interaction regressions. We present the results

in Panel B of Table 8. Consistent with our prediction, the coefficients on the triple interaction term,

Centralityi,t−1 × Broker Relationshipi,t−1 × 1(Outflowi,t > 5%), are positive and statistically significant

at conventional levels in all specifications. Our results are also consistent with those found in a related

literature on client-dealer networks. For instance, Di Maggio, Kermani, and Song (2017) show that prior

trading relationships are valuable especially in turbulent times in the OTC corporate bond market.

4.2.4 The Fund–Centrality Premium When Funds Submit Uninformed Large Orders

Our results thus far suggest that the return–gap premium associated with brokerage network central-

ity is more pronounced when funds’ trading activities are largely driven by liquidity reasons and funds can

credibly signal this to their brokers. In addition, we find that brokers’ incentives and trading relationships

further drive up the fund–centrality premium, corroborating our liquidity provision hypothesis. One could

still argue that central funds can obtain the return–gap premium because central funds can more easily

slice up large orders and spread across many brokers who can then further spread their clients’ orders

across many counterparties. Although not mutually exclusive with this alternative hypothesis, our liq-

uidity provision hypothesis has clear predictions about the relation between the fund–centrality premium

and the information content of trading. We provide further evidence that the fund–centrality premium is

mostly concentrated in the periods that can be characterized by uninformed trading activities. We do so

using an alternative measure, which puts emphasis on funds’ trading volume in relation to fund flows, to

identify such periods. In addition, we show that the fund–centrality premium is further amplified when

the orders are also likely larger.

We identify periods of heavy information-motivated buying and selling activities following Alexander,

Cici, and Gibson (2007). We calculate BF and SF metrics as follows:

BFi,t = BUY Si,t − FLOWi,t

TNAi,t−1
& SFi,t = SELLSi,t + FLOWi,t

TNAi,t−1
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where BUY Si,t is fund i’s dollar volume of stock purchases during half-year t, SELLSi,t is fund i’s dollar

volume of stock sales during half-year t, FLOWi,t is fund i’s net investor flow (inflow minus outflow) during

half-year t, and TNAi,t−1 is fund i’s total net assets at the end of half-year t− 1. Exploiting within-fund

variation in BF and SF metrics, Alexander, Cici, and Gibson (2007) show that buy (sell) portfolios with

high BF (SF ) tend to outperform buy (sell) portfolios with low BF (SF ). Intuitively, trading against

investor flows is likely motivated by superior private information, whereas trading with flows is likely driven

by liquidity reasons, i.e., scaling up to accommodate inflows and scaling down to accommodate outflows

(see also Coval and Stafford (2007)).

Since heavy informed buying activities do not necessarily coincide with heavy informed selling activ-

ities, we assign half-years in which both BF and SF fall below its respective top quartile value as periods

of uninformed trading (or at least less informed trading). We interact an indicator variable for period of

uninformed trading with brokerage network centrality and estimate the following linear regression model:

Return Gapi,t = δ × Centralityi,t−1 × 1(BFi,t < Q3 & SFi,t < Q3) + β × Centralityi,t−1

+ ρ× 1(BFi,t < Q3 & SFi,t < Q3) + γ × Covariatesi,t−1 + αi + θt + εi,t

(11)

where 1(BFi,t < Q3 & SFi,t < Q3) is an indicator variable that is equal to 1 if both BFi,t and SFi,t

fall below its respective top quartile value during half-year t and the rest of the model is the same as in

Equation (7).

We present the regression results in Panel A of Table 9. We find that the coefficients on Centralityi,t−1×

1(BFi,t < Q3 & SFi,t < Q3) are positive and statistically significant at 1% and 5% levels, whereas the

coefficients on Centralityi,t−1 are small and statistically insignificant. These results are consistent with

our main results based on large outflow events and further suggest that the fund–centrality premium is

associated with trading motives and mostly concentrated in periods of uninformed trading, i.e., when funds

are trading with flows, rather than against flows.

[Insert Table 9]

Next, we proxy for average order sizes using average trade sizes inferred from consecutive portfolio
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disclosures, adjusting for trading volume in the market as follows:

Trade Sizei,t = 1
Ni,t

∑
k

| Sharesi,k,t − Sharesi,k,t−1 |
V OL

CRSP
k,t

(12)

where Sharesi,k,t is the split-adjusted number of shares held in stock k by fund i at the end of half-year (or

quarter) t, V OLCRSP
k,t is the average CRSP monthly volume between portfolio disclosures, and the averages

are taken over stocks for which Sharesi,k,t 6= Sharesi,k,t−1. To arrive at the semi-annual figure, we take

the average of quarterly numbers, if two quarterly observations are available.

In order to test whether the fund–centrality premium is more pronounced when funds submit large

uninformed orders, we add in Equation (11) an additional interaction term, 1(Trade Size > Q3), which

is an indicator variable that is equal to 1 if Trade Sizei,t is above its top quartile value. We present the

triple interaction results in Panel B of of Table 9. In columns (1) and (3), the coefficients on the triple

interaction term, Centralityi,t−1 × 1(BFi,t < Q3 & SFi,t < Q3) × 1(Trade Sizei,t > Q3), are positive and

significant at 5% and 10% levels. In contrast, the coefficients on Centralityi,t−1 × 1(Trade Sizei,t > Q3)

are small and statistically insignificant. These results suggest that central funds can obtain the return–

gap premium when central funds submit large uninformed orders. As a robustness check in columns (3)

and (4), we replace an indicator variable with its continuous counterpart, Trade Sizei,t and continue to

obtain qualitatively similar results. Overall, our results suggest that the fund–centrality premium is more

pronounced when the trading orders are larger, but only when the trades are likely motivated by liquidity

reasons. These results are largely consistent with our hypothesis that institutional brokerage networks

facilitate liquidity provision and mitigate trading costs associated with adverse selection.

5 A Natural Experiment

We recognize that our results are not completely free from endogeneity concerns that could be

derived from, for instance, reverse causality. Hence, we conduct a natural experiment to provide evidence

supportive of our causal interpretation that institutional brokerage networks improve institutional trading
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performance. To accomplish this, we exploit mergers of large brokerage houses as plausibly exogenous

shocks to the network structure.

5.1 Backgrounds on Brokerage Mergers and Identification

Following Hong and Kacperczyk (2010), we identify mergers among brokerage houses by relying on

information from the SDC Mergers and Acquisition database. We choose all the mergers that the acquiring

broker belongs to the four-digit SIC code 6211 (“investment Commodity Firms, Dealers, and Exchanges”).

Next, we manually match brokerage mergers identified in the SDC data using broker names and narrow

down to the mergers in which broker names show up in at least 100 N-SAR filings.25 This process gives

rise to twenty six brokerage mergers during the period from 1995 to 2015. Table 10 lists all twenty six

brokerage mergers. The table also reports average broker shares before (from18 months to 6 months) and

after (from 6 months to 18 months) the merger and changes in average broker shares around the merger.

[Insert Table 10]

The shock strength, however, is a major concern for our natural experiment, given the complexity

of the network structure (which typically consists of thousands of nodes connected by tens of thousands

edge). Moderate-sized brokerage mergers, especially as stand-alone events (which amounts to cutting a

small number of edges connected to a single node) are unlikely to have an economically meaningful impact

on the entire structure of institutional brokerage networks. Therefore, we focus on two waves of five largest

mergers of institutional brokerage houses that took place around 2000 and 2008, in which more than ten

percent of edges were served.26

Figure 3 plots the changes in average broker shares around each of these mergers. A visual inspection

suggests that these five mergers were likely to have a meaningful impact on institutional brokerage networks.

Specifically, the average brokerage shares of the acquired brokers dramatically decreased following the
25 Our N–SAR sample period runs from 1994 to 2016. But we exclude the first and last years to facilitate a

difference-in-differences (DiD) analysis around the merger.
26 These five brokerage mergers include CSFB’s acquisition of DLJ and UBS’acquistion of PaineWebber in 2000

and JP Morgan Chase’s acquisition of Bear Stearns, Barclay’s acquisition of Lehman Brothers, and Bank of America’s
acquisition of Merrill Lynch in 2008.
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merger in all cases, whereas those of the acquiring brokers increased notably after the merger except for

the case of Bank of America. For instance, mutual funds on average paid about 4.02 % of its brokerage

commissions to CSFB as one of the top 10 brokers, while the figure for DLJ was 4.40%. After the merger,

CSFB’s average broker shares increased to 6.40%. One notable exception is Bank of America’s acquisition

of Merrill Lynch. After the merger, the merged firm’s brokerage services were carried out under the name

of Merrill Lynch for a while and thus reported as such in N–SAR reports.

[Insert Figure 3]

5.2 Empirical Design and Results

Our analysis of the causal effect of mutual funds’ brokerage network centrality on their trading

performance exploits large brokerage mergers in a quasi-natural experiment setting to overcome potential

concerns about endogeneous network formation. As stated earlier, we exploit two waves of five largest

mergers of brokerage houses and the empirical methodology of our analysis is a difference-in-differences

(DiD). In a standard DiD approach, the sample needs to be divided into treatment and control groups.

Here comes another challenge for our natural experiment: the treatment of shock is a priori unclear.

Nevertheless, we can reason that mutual funds that traded largely through the acquiring brokers but not

heavily through the target (acquired) brokers are most likely to benefit from exogenous shocks to the

network, since the acquiring broker would retain at least some of the target broker’s clients.

Building on this intuition, we construct hypothetical post-merger brokerage network centrality under

a fairly conservative assumption. Specifically, we assume that funds who had relationships with a target

broker before the merger were to simply redistribute commissions to their existing brokers on a pro-rata

basis following the merger.27 Then, we proceed by calculating the expected change in brokerage network
27 In particular, we re-scale each mutual fund’s normalized commission payment vector (gi,·) a half-year prior to

the merger event window, denoted g̃i,·, as follows:

g̃i,k =
{

0 if k ∈ S;
gi,k∑

k /∈S
gi,k

if k /∈ S. (13)

where i indexs funds, k indexs brokers, and S denotes set of acquired brokers. For instance, if a mutual fund i hired
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centrality as the difference between the hypothetical post-merger centrality and the actual pre-merger

centrality around the merger event. Under this assumption, the funds that did not trade through the

target broker (candidate treated funds) do not change their brokerage relationships, as they don’t need to,

but nonetheless experience exogenous increases in brokerage network centrality after the merger, because

other funds need to reconfigure their brokerage relationships. We form the treatment group by choosing

the top ten percent of mutual funds sorted based on the expected change in brokerage network centrality.

Our empirical methodology also requires that we specify the event window around the mergers. In

general, most event studies focus on a very narrow window because choosing a window that is too long

may include irrelevant information with the focused events (Hong and Kacperczyk (2010)). However, a

window that is too short would result in the loss of many observations containing relevant information and

we thus choose a relatively longer time window than other event studies. Specifically, we examine one year

before and one year after the event window of brokerage mergers. Figure 4 illustrates the event timelines

for our natural experiment.

[Insert Figure 4]

If we denote the average outcome variables in the treatment (T) and control (C) groups in the pre-

and post-event periods by OT,1, OT,2, OC,1, and OC,2, respectively, the partial effect of change due to the

merger can be estimated as

DiD = (OT,2 −OT,1)− (OC,2 −OC,1). (14)

A potential concern with the above estimation is that the results could be affected by fund character-

istics. In other words, if the funds in the treatment and control groups have different fund characteristics,

then those characteristics could potentially bias our results. To resolve this concern, we use a matching

technique. As mentioned earlier, we assign top ten percent of funds with the largest expected change in bro-

kerage network centrality as the treatment group. Among the remaining 90% of the sample, we construct

the control group by matching on pre-treatment (pre-event) outcome variables and all fund characteristics

broker A, B, C, and D and its gi =
[
0.1 0.3 0.4 0.2

]
and C is an acquired broker, then g̃i =

[ 0.1
0.6

0.3
0.6 0 0.2

0.6
]
.
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used in our previous analyses except for log(Family TNA)28 following Genetic Matching algorithm proposed

by Diamond and Sekhon (2013). Matching on observable pre-event fund characteristics and pre-treatment

outcome variables can remove (at least to a degree) common influences of fund characteristics that could

affect return gap other than changes in brokerage network centrality.

Table 11 reports the results of our matching using Degree Centrality as our measure of brokerage

network centrality. As seen in the table, some of the variables are remarkably different before matching,

but those differences largely disappear after matching. Panel A presents the matching balance results for

the brokerage mergers in 2000. Before matching, Degree Centrality is significantly different at the 1% level,

i.e., the treated funds were more central to begin with. In addition, among covariates, Expense Ratio,

Size Percentile, and Value Percentile are significantly different at the conventional levels. Our matching

appears successful and all p-values for post-matching differences in means are above 10%, with the smallest

p-value of 0.18. Panel B presents the matching balance results for the brokerage mergers in 2008. Before

matching, Degree Centrality is also significantly different at the 1% level and several covariates including

log(Fund TNA), Expense Ratio, Commission Rate, and Trade Volume are also significantly different at the

conventional levels. Again, the matching appears similarly successful.

[Insert Table 11]

To be consistent with our causal interpretation, if the brokerage mergers had indeed served as positive

exogenous shocks to the brokerage network centrality of mutual funds in the treatment group, then the

return gap of treated funds would have experienced significant increases relative to that of the control

group of funds following the mergers.

Table 12 presents our DiD results. Panel A shows the results of our DiD analysis of the brokerage

mergers in 2000. The average Degree Centrality of the treatment group increased from 0.206 to 0.235,

while the average Degree Centrality of the matched control group only increased from 0.205 to 0.222.

Thus, we observe a discernible increase in Degree Centrality of 0.013, using a DiD estimator. This effect
28 It turns out that it is very difficult to match on fund family size and all the other fund characteristics including

pre-event outcome variables.
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is statistically significant at the 5% level. Moreover, the average Return Gap also substantially increased

around the mergers in 2000 by 9.3 basis points per month relative to a control group of funds, significant at

the 10% level. Similarly, Panel B presents the results of our DiD analysis of the brokerage mergers in 2008.

We similarly observe a discernible increase in Degree Centrality by 0.034, using a DiD estimator, significant

at the 1% level. At the same time, the average Return Gap of the treated funds also substantially increased

by 6.8 basis points per month relative to a control group of funds, significant at the 10% level. In sum,

the DiD results indicate that exogenous changes in brokerage network centrality due to large brokerage

mergers are accompanied by predicted changes in return gap performance.

[Insert Table 12]

As a robustness check, we re-do our DiD analysis with Eigenvector Centrality instead of Degree

Centrality. We obtain qualitatively similar results, as reported in Table A3 and Table A4. To sum up,

positive changes in brokerage network centrality as a result of exogenous shocks to the brokerage network are

accompanied by positive changes in return gap. These results are consistent with our causal interpretation

that institutional brokerage networks improve institutional trading performance.

6 Conclusion

Using a unique dataset on brokerage commission payments for a comprehensive sample of mutual

funds, we map trading networks of mutual funds and their brokers as affiliation networks in which mutual

funds are connected through their overlapping brokerage relationships. Mutual funds that trade through

many brokers that many other funds also trade through are central in the network. We find that central

funds outperform peripheral ones, especially in terms of return gap. In order to shed light on the specific

mechanisms behind the return–gap premium associated with brokerage network centrality (simply the

fund–centrality premium), we propose a liquidity provision hypothesis.

Suppose, for instance, that a mutual fund faced with an extreme fund outflow is forced to sell large

blocks of its holdings in several stocks at the same time. The sell orders would tend to be submitted to
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brokers with which the fund has strong relationships and that could infer the underlying liquidity reasons

for the orders. The brokers, in turn, may be likely to turn to other institutional clients with whom they

have strong relationships to absorb the orders while communicating the likely liquidity motives for the

trades to ease their concerns about trading against better informed traders. Thus, central funds are better

positioned to tap into larger pools of unexpressed liquidity, especially when submitting large blocks of

liquidity-motivated orders.

Consistent with our liquidity provision hypothesis, we find that the fund–centrality premium is more

pronounced when funds’ trading activities are largely driven by liquidity motives, such as to accommodate

large fund outflows. We also find that the fund–centrality premium is further driven up by brokers’

incentives to generate greater commission revenues and by trading relationships that funds have established

with their brokers. Exploiting large brokerage mergers as plausibly exogenous shocks to the network

structure, we provide evidence supportive of our causal interpretation that institutional brokerage networks

improve institutional trading performance.
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Panel A: Graphical representation
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Panel B: Extended-form representation

GT =

Fund

Br
ok

er


1 2 3 4 5 6 7 8 9 10

A 0.85 0.20 0.15 0.50 0.20 0.00 0.20 0.15 0.50 0.00
B 0.15 0.33 0.40 0.00 0.17 0.25 0.50 0.50 0.10 1.00
C 0.00 0.22 0.10 0.00 0.28 0.40 0.00 0.35 0.40 0.00
D 0.00 0.25 0.35 0.50 0.35 0.35 0.30 0.00 0.00 0.00
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Panel C: Reduced-form representation

A =

Fund

Fu
nd



1 2 3 4 5 6 7 8 9 10

1 0.00 0.35 0.30 0.50 0.35 0.15 0.35 0.30 0.60 0.15
2 0.35 0.00 0.83 0.45 0.84 0.72 0.78 0.70 0.52 0.33
3 0.30 0.83 0.00 0.50 0.77 0.70 0.85 0.65 0.35 0.40
4 0.50 0.45 0.50 0.00 0.55 0.35 0.50 0.15 0.50 0.00
5 0.35 0.84 0.77 0.55 0.00 0.80 0.67 0.60 0.58 0.17
6 0.15 0.72 0.70 0.35 0.80 0.00 0.55 0.60 0.50 0.25
7 0.35 0.78 0.85 0.50 0.67 0.55 0.00 0.65 0.30 0.50
8 0.30 0.70 0.65 0.15 0.60 0.60 0.65 0.00 0.60 0.50
9 0.60 0.52 0.35 0.50 0.58 0.50 0.30 0.60 0.00 0.10
10 0.15 0.33 0.40 0.00 0.17 0.25 0.50 0.50 0.10 0.00


Panel D: Brokerage network centrality

Fund 1 2 3 4 5 6 7 8 9 10
Degree Centrality 0.339 0.613 0.594 0.389 0.592 0.513 0.572 0.528 0.450 0.267
Eigenvector Centrality 0.550 1.000 0.972 0.654 0.974 0.870 0.928 0.864 0.730 0.468

Figure 1: Institutional Brokerage Networks: A Toy Example

This figure illustrates how we construct institutional brokerage networks and calculate brokerage network centrality
using a simple example network consisting of ten funds and four brokers.
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Figure 2: Institutional Brokerage Networks

This figure shows a snapshot of institutional brokerage networks at the end of June 2016. Blue nodes represent
mutual funds, red nodes represent institutional brokers, and lines represent connections between mutual funds and
their brokers.
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(a) CSFB’s acquisition of DLJ
(b) UBS Warburg Dillon Read’s acquisition of
Paine Webber

(c) JP Morgan Chase’s acquisition of Bear Stearns (d) Barclay’s acquisition of Lehman Brothers

(e) Bank of America’s acquisition of Merrill Lynch

Figure 3: Average Brokerage Share around Brokerage Merger

This figure shows changes in average broker shares for the acquiring brokers and target brokers around the mergers.
A broker share is defined as a fraction of the commission payments to the given broker by the fund and broker
shares are averaged across funds each month on a rolling basis around each of the following mergers: Credit Suisse
First Boston (CSFB)’s acquisition of Donaldson Lufkin Jenrette (DLJ) in 2000 (a); UBS Warburg Dillon Read’s
acquisition of Paine Webber in 2000 (b); JP Morgan Chase’s acquisition of Bear Stearns in 2008 (c); Barclays’s
acquisition of Lehman Brothers in 2008 (d); and Bank of America’s acquisition of Merrill Lynch in 2008 (e).
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June-99 Dec-99 June-00 Dec-00 June-01 Dec-01

Event
Pre-outcome:
Return Gap

Post-outcome:
Return Gap

Centrality Centrality

11/03/00*

(a) Event Timeline of Brokerage Mergers in 2000

Dec-06 June-07 Dec-07 June-08 Dec-08 June-09 Dec-09

Event

Pre-outcome:
Return Gap

Post-outcome:
Return Gap

Centrality Centrality

05/30/08* 09/22/08*
01/01/09*

(b) Event Timeline of Brokerage Mergers in 2008

Figure 4: Event Timeline of Brokerage Mergers

Figure 4a depicts the event timeline of the 2000 mergers: Credit Suisse First Boston (CSFB)’s acquisition of Don-
aldson Lufkin Jenrette (DLJ) and UBS Warburg Dillon Read’s acquisition of Paine Webber in 2000. The effective
date of both mergers is November 3rd, 2000. We set the second half of 2000 as the event window.
Figure 4b depicts the event timeline of the 2008 mergers: JP Morgan Chase’s acquisition of Bear Stearns, Barclays’s
acquisition of Lehman Brothers, and Bank of America’s acquisition of Merrill Lynch in 2008. The effective dates are
May 30th, 2008, September 22nd, 2008, and January 1st, 2009, respectively. We set the entire year of 2008 as the
event window.
* Effective date is as reported by SDC Platinum Financial Securities Data.
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Table 1: Brokerage Commission Payments: Example and Descriptions

This table provides an example of and some descriptive statistics on brokerage commission payments. N-SAR filings
report brokerage commissions paid to the 10 brokers that received the largest amount (Item 20) from the fund and
the aggregate brokerage commission payments (Item 21). Panel A provides an example for T. Rowe Price Blue
Chip Growth Fund for the period ending in June 30, 2016. Panel B reports the concentration level of brokerage
commissions for the top 1, 3, 5, 7, and 10 brokers to which the fund paid the largest amount. Panel C reports the
transition matrix of year-to-year changes in the broker rankings for the fund by the amount of commission payments.

Panel A: Example: T ROWE PRICE BLUE CHIP GROWTH FUND (CIK = 902259), June 30, 2016
Item 20 Name of Broker IRS Number Commisions ($000)

1 BANK OF AMERICA MERRILL LYNCH 13-5674085 415
2 JPMORGAN CHASE 13-4994650 292
3 MORGAN STANLEY CO INC 13-2655998 252
4 DEUTSCHE BANK SECURITIES 13-2730828 207
5 RBC CAPITAL MARKETS 41-1416330 159
6 CITIGROUP GLOBAL MARKETS INC 11-2418191 157
7 CS FIRST BOSTON 13-5659485 153
8 BAIRD ROBERT W 39-6037917 148
9 GOLDMAN SACHS 13-5108880 144

10 SANFORD C BERNSTEIN 13-2625874 115
Item 21 Aggregate Brokerage Commissions ($000) 3107

Panel B: Concentration of Brokerage Commissions
Broker Share (%) Mean St. Dev. Pctl(1) Pctl(25) Median Pctl(75) Pctl(99)
Top 1 Broker 25.65 22.21 5.53 11.54 16.88 30.00 100.00
Top 1–3 Brokers 45.24 23.95 13.02 27.59 37.44 56.76 100.00
Top 1–5 Brokers 56.60 22.53 19.00 39.26 51.17 71.13 100.00
Top 1–7 Brokers 64.47 20.91 23.80 48.25 61.32 80.63 100.00
Top 1–10 Brokers 72.45 18.91 29.30 58.08 71.62 88.89 100.00

Panel C: Persistence in Brokerage Relationship (Transition Matrix)
Probability (%) Next Year
Current Year Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 Top 9 Top 10

Top 1 46.74 20.55 13.35 10.06 7.57 6.44 5.41 4.99 4.41 4.00
Top 2 17.37 23.69 17.29 13.03 10.96 8.89 7.58 6.63 6.30 5.65
Top 3 10.71 15.83 17.64 14.52 12.34 10.93 9.61 8.53 7.14 7.62
Top 4 7.17 11.24 13.33 15.12 13.31 11.82 10.10 9.59 9.42 8.47
Top 5 5.31 8.09 10.53 12.73 13.83 12.84 12.16 10.54 10.10 9.67
Top 6 4.00 6.47 8.87 10.49 11.84 13.00 12.91 12.12 10.78 10.67
Top 7 3.12 5.30 6.65 8.18 10.38 11.67 12.77 13.11 12.71 11.21
Top 8 2.41 3.60 5.00 6.56 8.02 9.93 11.72 13.73 13.70 13.53
Top 9 1.85 2.86 4.06 5.12 6.15 8.22 10.22 11.28 14.08 13.93
Top 10 1.32 2.36 3.28 4.19 5.60 6.25 7.52 9.48 11.35 15.26
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Table 2: Summary Statistics

This table reports the summary statistics on degree centrality (Freeman (1979)), eigenvector centrality (Bonacich
(1972, 1987)), and other fund-level characteristics over the period from the first half of 1994 through the first half
of 2016. The fund TNA (Item 74.T) and an indicator for an index fund (Item 69) are directly taken from N-SAR
filings and we use the family code reported by the fund (Item 19.C) to calculate the family TNA. The fund trading
volume is calculated as the sum of purchases (Item 71.A) and sales (Item 71.B). Since brokerage commissions are
reported at the registrant level, we calculate the commission rate as a ratio of the aggregate commission payments
(Item 21) to the sum of all trading volumes across equity-oriented funds within the same registrant. We estimate
the fund’s commission payments as the product of the commission rate and the fund trading volume. The expense
ratio is from CRSP and we calculate monthly net flows for each fund share class i during month t as follows:
FLOWi,t = TNAi,t − TNAi,t−1 × (1 + Ri,t) where FLOW i,t is the dollar value of fund flow (net new issues and
redemptions), TNAi,t is the total net asset, and Ri,t is the monthly return. To compute the monthly fund flow for
the fund, we sum monthly fund flows for all share classes belonging to the same fund as identified by MFLINKS.
Monthly fund flows are summed over the half-year to calculate the semi-annual fund flow. We scale the semi-
annual fund flows by the beginning-of-period TNA. For each fund-quarter, size, value, and momentum percentiles
are calculated as percentiles of market capitalization, book-to-market ratio, and 12-month returns skipping the most
recent month, respectively, averaged across all stock holdings. For each fund-halfyear, we take the most recent
quarterly observation of average size-value-momentum percentiles.

Variable Obs. Mean St. Dev. Q1 Median Q3

Degree Centrality 54, 331 0.16 0.08 0.10 0.16 0.21
Eigenvector Centrality 54, 331 0.53 0.25 0.33 0.57 0.73
Return Gap (%) 54, 331 −0.03 0.39 −0.20 −0.02 0.14
Fund TNA ($billion) 54, 331 1.42 3.43 0.08 0.29 1.09
Family TNA ($billion) 54, 331 122.09 277.91 2.97 20.50 79.80
Expense Ratio (%) 54, 331 1.13 0.42 0.92 1.11 1.35
Commission Rate (%) 54, 331 0.12 0.13 0.06 0.09 0.14
Trade Volume, as % of TNA 54, 331 86.32 80.10 34.81 63.84 108.64
1(Index Fund) 54, 331 0.10 0.30 0 0 0
Size Percentile 54, 331 84.97 12.60 76.87 89.52 95.03
Value Percentile 54, 331 37.46 11.92 28.02 37.21 46.15
Momentum Percentile 54, 331 57.69 9.56 51.55 57.07 63.46
Fund Flow, as % of TNA 54, 331 1.98 22.44 −8.01 −2.25 5.71
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46Table 3: Determinants of Mutual Funds’ Brokerage Network Centrality

This table presents the results of regressing degree centrality and eigenvector centrality on contemporaneous fund-level characteristics including
log(fund TNA), log(family TNA), expense ratio, commission ratio, trading volume, and size-value-momentum percentiles. The details on the
fund-level variables are reported in Table 2. The standard errors are clustered at the fund level and the resulting t-statistics are reported in
parentheses. Statistical significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

Dependent variable: Degree Centrality ×100 Eigenvector Centrality ×100
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Constant 2.34∗∗∗ −2.54∗∗ −1.32 −21.41∗∗∗

(6.18) (−2.33) (−1.08) (−5.86)
log(Fund TNA) 0.09 0.25∗∗∗ 0.14∗∗ 0.20∗∗∗ 0.21∗∗∗ 0.64∗∗∗ 0.90∗∗∗ 0.58∗∗∗ 0.85∗∗∗ 0.83∗∗∗

(1.53) (4.12) (2.53) (3.11) (3.13) (3.19) (4.50) (2.93) (3.72) (3.59)
log(Family TNA) 1.36∗∗∗ 1.44∗∗∗ 1.62∗∗∗ 0.60∗∗∗ 0.59∗∗∗ 5.21∗∗∗ 5.33∗∗∗ 5.78∗∗∗ 1.92∗∗∗ 1.91∗∗∗

(29.57) (32.21) (36.92) (8.02) (7.95) (34.98) (36.49) (38.31) (7.53) (7.44)
Expense Ratio (%) 1.35∗∗∗ −0.22 1.52∗ −1.76∗∗

(5.54) (−0.89) (1.90) (−2.07)
Commission Rate (%) 3.94∗∗∗ −0.82∗∗∗ 6.21∗∗∗ −1.72∗

(8.76) (−2.86) (4.58) (−1.78)
Trading Volume, as % of TNA 0.01∗∗∗ 0.002∗∗∗ 0.03∗∗∗ 0.01∗∗∗

(12.34) (4.11) (9.73) (3.49)
Size Percentile 0.09∗∗∗ 0.02 0.27∗∗∗ 0.03

(11.16) (1.59) (9.43) (0.72)
Value Percentile −0.05∗∗∗ −0.01 −0.10∗∗∗ −0.003

(−6.75) (−0.77) (−3.68) (−0.12)
Momentum Percentile −0.10∗∗∗ −0.01∗∗∗ −0.12∗∗∗ −0.03∗

(−15.80) (−2.85) (−6.37) (−1.94)
Time Fixed Effects No No Yes Yes Yes No No Yes Yes Yes
Fund Fixed Effects No No No Yes Yes No No No Yes Yes
Observations 54,331 54,331 54,331 54,331 54,331 54,331 54,331 54,331 54,331 54,331
Adjusted R2 0.19 0.26 0.42 0.74 0.74 0.28 0.31 0.33 0.72 0.72
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Table 4: Brokerage Network Centrality and Mutual Fund Performance: Portfolio Sorts

This table reports the average time-series monthly returns from July 1994 to December 2016. Funds are sorted into quintile portfolios based on
degree centrality (in columns (1) to column (6)) and eigenvector centrality (in columns (7) to (12)). The investor return is decomposed into the
holdings return (net of expenses) and the return gap following Equation (5). Raw returns as well as four-factor adjusted returns are reported for
average return gap, average holdings return (net of expenses), and average investor return. Panel A reports the full sample results, whereas Panel
B and Panel C report the split-sample results. The heteroskedasticity robust t-statistics are reported in parentheses. Statistical significance at
the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

Panel A: Full Sample: July 1994 to December 2016

Raw Return (% per month) 4-Factor Alpha (% per month)
Peripheral Q2 Q3 Q4 Central C – P Peripheral Q2 Q3 Q4 Central C – P

Sorted on Degree Centrality
Return Gap −0.06∗∗∗ −0.05∗∗ −0.04∗∗ −0.03 −0.01 0.05∗∗∗ −0.02 −0.02 −0.01 0.003 0.02 0.04∗∗∗

(−3.12) (−2.58) (−2.32) (−1.54) (−0.74) (5.03) (−1.41) (−1.08) (−0.61) (0.20) (1.19) (4.48)
Holdings Return 0.88∗∗∗ 0.87∗∗∗ 0.88∗∗∗ 0.86∗∗∗ 0.87∗∗∗ −0.01 0.13∗∗∗ 0.13∗∗∗ 0.13∗∗∗ 0.13∗∗∗ 0.12∗∗∗ −0.005

(3.03) (3.04) (3.05) (2.99) (2.96) (−0.19) (3.20) (3.28) (2.95) (2.95) (3.18) (−0.19)
Investor Return 0.81∗∗∗ 0.83∗∗∗ 0.83∗∗∗ 0.84∗∗∗ 0.86∗∗∗ 0.05 0.11∗∗∗ 0.12∗∗∗ 0.12∗∗∗ 0.13∗∗∗ 0.14∗∗∗ 0.03

(2.98) (3.00) (3.04) (3.02) (3.04) (1.55) (2.67) (2.85) (2.78) (2.98) (3.58) (1.53)

Sorted on Eigenvector Centrality
Return Gap −0.07∗∗∗ −0.04∗∗ −0.04∗∗ −0.03 −0.01 0.05∗∗∗ −0.02∗ −0.01 −0.01 0.002 0.02 0.04∗∗∗

(−3.27) (−2.43) (−2.25) (−1.61) (−0.71) (5.26) (−1.66) (−0.85) (−0.56) (0.11) (1.22) (4.75)
Holdings Return 0.88∗∗∗ 0.87∗∗∗ 0.88∗∗∗ 0.87∗∗∗ 0.87∗∗∗ −0.02 0.13∗∗∗ 0.12∗∗∗ 0.13∗∗∗ 0.13∗∗∗ 0.12∗∗∗ −0.01

(3.06) (3.01) (3.04) (3.01) (2.96) (−0.52) (3.39) (3.09) (2.98) (2.87) (3.26) (−0.46)
Investor Return 0.82∗∗∗ 0.82∗∗∗ 0.83∗∗∗ 0.84∗∗∗ 0.85∗∗∗ 0.04 0.11∗∗∗ 0.11∗∗∗ 0.12∗∗∗ 0.13∗∗∗ 0.14∗∗∗ 0.03

(2.99) (2.99) (3.03) (3.03) (3.04) (1.34) (2.80) (2.74) (2.79) (2.93) (3.64) (1.44)

Sorted on Past Return Gap
Return Gap −0.09∗∗∗ −0.05∗∗∗ −0.05∗∗∗ −0.02 0.02 0.11∗∗∗ −0.03 −0.02 −0.03∗∗ −0.002 0.05∗∗∗ 0.08∗∗∗

(−3.50) (−3.24) (−3.33) (−1.47) (0.77) (4.57) (−1.41) (−1.48) (−2.02) (−0.16) (2.67) (4.16)
Holdings Return 0.88∗∗∗ 0.86∗∗∗ 0.88∗∗∗ 0.87∗∗∗ 0.88∗∗∗ −0.003 0.08 0.12∗∗∗ 0.17∗∗∗ 0.16∗∗∗ 0.11∗ 0.03

(2.88) (3.07) (3.21) (3.07) (2.79) (−0.05) (1.54) (2.72) (4.11) (3.38) (1.93) (0.53)
Investor Return 0.79∗∗∗ 0.81∗∗∗ 0.83∗∗∗ 0.84∗∗∗ 0.90∗∗∗ 0.11∗ 0.05 0.10∗∗ 0.15∗∗∗ 0.16∗∗∗ 0.16∗∗∗ 0.11∗

(2.74) (2.99) (3.12) (3.09) (3.03) (1.95) (1.01) (2.28) (3.60) (3.35) (2.90) (1.96)
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48Table 4–Continued
Panel B: Sub-sample: July 1994 to December 2007

Raw Return (% per month) 4-Factor Alpha (% per month)
Peripheral Q2 Q3 Q4 Central C – P Peripheral Q2 Q3 Q4 Central C – P

Sorted on Degree Centrality
Return Gap −0.04 −0.03 −0.03 −0.01 0.01 0.05∗∗∗ 0.01 0.02 0.02 0.03∗ 0.05∗∗∗ 0.03∗∗∗

(−1.53) (−1.18) (−1.11) (−0.33) (0.23) (3.36) (0.80) (1.05) (1.09) (1.93) (2.71) (2.68)
Holdings Return 0.99∗∗∗ 0.98∗∗∗ 0.99∗∗∗ 0.97∗∗∗ 0.97∗∗∗ −0.02 0.21∗∗∗ 0.23∗∗∗ 0.22∗∗∗ 0.22∗∗∗ 0.19∗∗∗ −0.02

(2.82) (2.80) (2.82) (2.73) (2.65) (−0.51) (3.95) (3.81) (3.31) (3.36) (3.41) (−0.66)
Investor Return 0.94∗∗∗ 0.95∗∗∗ 0.96∗∗∗ 0.96∗∗∗ 0.97∗∗∗ 0.03 0.23∗∗∗ 0.24∗∗∗ 0.24∗∗∗ 0.25∗∗∗ 0.24∗∗∗ 0.01

(2.89) (2.88) (2.90) (2.85) (2.82) (0.64) (4.31) (4.22) (3.76) (4.00) (4.45) (0.47)
Sorted on Eigenvector Centrality

Return Gap −0.05∗ −0.03 −0.03 −0.01 0.01 0.06∗∗∗ 0.01 0.02 0.02 0.03∗∗ 0.04∗∗ 0.04∗∗∗

(−1.75) (−1.02) (−1.01) (−0.33) (0.20) (3.60) (0.36) (1.41) (1.23) (1.99) (2.57) (2.88)
Holdings Return 1.00∗∗∗ 0.97∗∗∗ 0.98∗∗∗ 0.97∗∗∗ 0.96∗∗∗ −0.04 0.23∗∗∗ 0.21∗∗∗ 0.22∗∗∗ 0.21∗∗∗ 0.20∗∗∗ −0.03

(2.85) (2.77) (2.80) (2.75) (2.65) (−0.89) (4.20) (3.57) (3.37) (3.22) (3.56) (−0.86)
Investor Return 0.95∗∗∗ 0.95∗∗∗ 0.96∗∗∗ 0.96∗∗∗ 0.97∗∗∗ 0.02 0.23∗∗∗ 0.23∗∗∗ 0.24∗∗∗ 0.25∗∗∗ 0.24∗∗∗ 0.01

(2.91) (2.86) (2.89) (2.88) (2.81) (0.38) (4.50) (4.04) (3.81) (3.94) (4.52) (0.40)
Sorted on Past Return Gap

Return Gap −0.08∗∗ −0.05∗∗ −0.04∗∗ −0.003 0.08∗∗ 0.17∗∗∗ 0.01 −0.01 −0.01 0.03∗ 0.11∗∗∗ 0.11∗∗∗

(−2.33) (−2.42) (−2.13) (−0.15) (2.18) (4.94) (0.25) (−0.44) (−0.74) (1.70) (4.82) (4.05)
Holdings Return 1.02∗∗∗ 0.99∗∗∗ 0.97∗∗∗ 0.94∗∗∗ 0.97∗∗ −0.05 0.14∗∗ 0.22∗∗∗ 0.26∗∗∗ 0.25∗∗∗ 0.20∗∗ 0.06

(2.66) (2.97) (2.96) (2.76) (2.39) (−0.53) (2.22) (3.99) (4.37) (3.43) (2.10) (0.64)
Investor Return 0.94∗∗∗ 0.94∗∗∗ 0.93∗∗∗ 0.94∗∗∗ 1.05∗∗∗ 0.11 0.14∗∗ 0.22∗∗∗ 0.25∗∗∗ 0.28∗∗∗ 0.31∗∗∗ 0.16∗∗

(2.64) (2.95) (2.95) (2.89) (2.78) (1.35) (2.46) (4.19) (4.54) (3.93) (3.42) (2.03)

Panel C: Sub-sample: January 2008 to December 2016

Raw Return (% per month) 4-Factor Alpha (% per month)
Peripheral Q2 Q3 Q4 Central C – P Peripheral Q2 Q3 Q4 Central C – P

Sorted on Degree Centrality
Return Gap −0.10∗∗∗ −0.07∗∗∗ −0.07∗∗ −0.06∗∗ −0.05∗ 0.05∗∗∗ −0.06∗∗∗ −0.05∗∗∗ −0.04∗∗ −0.04∗ −0.02 0.04∗∗∗

(−3.23) (−3.04) (−2.47) (−2.27) (−1.72) (4.37) (−3.42) (−2.75) (−2.06) (−1.84) (−1.15) (4.36)
Holdings Return 0.71 0.71 0.71 0.71 0.73 0.02 −0.07∗ −0.06∗∗ −0.06∗ −0.06∗ −0.04 0.03

(1.43) (1.45) (1.45) (1.46) (1.48) (0.55) (−1.91) (−2.03) (−1.84) (−1.73) (−1.29) (1.01)
Investor Return 0.61 0.64 0.65 0.65 0.68 0.07∗∗ −0.13∗∗∗ −0.11∗∗∗ −0.10∗∗∗ −0.10∗∗ −0.07∗ 0.06∗∗∗

(1.29) (1.34) (1.36) (1.37) (1.43) (2.15) (−3.39) (−3.31) (−2.84) (−2.56) (−1.76) (2.73)
Sorted on Eigenvector Centrality

Return Gap −0.10∗∗∗ −0.07∗∗∗ −0.07∗∗ −0.06∗∗ −0.04 0.05∗∗∗ −0.06∗∗∗ −0.05∗∗∗ −0.04∗∗ −0.04∗∗ −0.02 0.04∗∗∗

(−3.19) (−3.01) (−2.51) (−2.43) (−1.61) (4.53) (−3.34) (−2.75) (−2.11) (−2.03) (−1.01) (4.42)
Holdings Return 0.71 0.71 0.72 0.71 0.73 0.02 −0.07∗ −0.06∗∗ −0.06∗ −0.06∗ −0.04 0.03

(1.43) (1.45) (1.46) (1.45) (1.48) (0.56) (−1.95) (−2.06) (−1.73) (−1.75) (−1.31) (1.02)
Investor Return 0.61 0.64 0.65 0.65 0.68 0.07∗∗ −0.13∗∗∗ −0.11∗∗∗ −0.10∗∗∗ −0.10∗∗∗ −0.06∗ 0.07∗∗∗

(1.30) (1.34) (1.36) (1.36) (1.44) (2.14) (−3.39) (−3.35) (−2.74) (−2.72) (−1.70) (2.74)
Sorted on Past Return Gap

Return Gap −0.10∗∗∗ −0.05∗∗ −0.06∗∗∗ −0.05∗∗ −0.07∗ 0.03 −0.07∗∗∗ −0.03∗ −0.04∗∗ −0.04∗∗ −0.03 0.03
(−2.77) (−2.22) (−2.83) (−2.45) (−1.82) (0.96) (−2.73) (−1.70) (−2.49) (−2.09) (−1.27) (1.31)

Holdings Return 0.67 0.66 0.74 0.75 0.74 0.07 −0.12∗∗ −0.11∗∗∗ −0.005 −0.01 −0.04 0.08
(1.33) (1.36) (1.56) (1.54) (1.48) (1.29) (−2.27) (−3.18) (−0.18) (−0.31) (−0.96) (1.33)

Investor Return 0.57 0.61 0.69 0.69 0.67 0.11 −0.19∗∗∗ −0.14∗∗∗ −0.05∗ −0.05 −0.08 0.11∗

(1.18) (1.28) (1.46) (1.47) (1.41) (1.64) (−3.21) (−3.70) (−1.72) (−1.35) (−1.50) (1.77)
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Table 5: Brokerage Network Centrality and Return Gap: Panel Regressions

This table examines whether our previous results documenting the fund–centrality premium based on portfolio
sorts continue to hold after controlling for fund characteristics, including lagged return gap, and fund fixed-effects.
Specifically, this table presents the results of our baseline linear regression model:

Return Gapi,t = β × Centralityi,t−1 + γ × Covariatesi,t−1 + αi + θt + εi,t

where i indexes mutual funds and t indexes time in half-years. The dependent variable is Return Gapi,t which
is fund i’s average return gap during half-year t. The independent variable of interest is Centralityi,t−1, which is
fund i’s brokerage network centrality (degree centrality or eigenvector centrality) measured at the end of half-year
t − 1. Covariatesi,t−1 are a vector of fund-level variables that are measured at the end of time t − 1 and include
log(fund TNA), log(family TNA), expense ratio, commission rate, trading volume, and average size-value-momentum
percentiles of the stocks in the fund’s portfolio. More details on fund-level variables are provided in Table 2. In
some specifications, the regression includes lagged return gap and fund fixed-effects (αi) and all regressions include
time fixed-effects (θt). Standard errors are clustered at the fund level and the resulting t-statistics are reported in
parentheses. Statistical significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

Dependent variable: Return Gap (%)
(1) (2) (3) (4) (5) (6)

Degree Centrality 0.15∗∗∗ 0.13∗∗∗ 0.09∗∗

(4.62) (4.44) (1.97)
Eigenvector Centrality 0.04∗∗∗ 0.04∗∗∗ 0.03∗∗

(4.70) (4.52) (2.01)
Past Return Gap (%) 0.08∗∗∗ 0.01 0.08∗∗∗ 0.01

(11.07) (0.89) (11.08) (0.89)
log(Fund TNA) −0.01∗∗∗ −0.01∗∗∗ −0.03∗∗∗ −0.01∗∗∗ −0.01∗∗∗ −0.03∗∗∗

(−6.91) (−6.87) (−9.72) (−6.92) (−6.89) (−9.72)
log(Family TNA) 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗

(6.25) (6.24) (2.61) (6.16) (6.14) (2.61)
Expense Ratio (%) −0.01 −0.01 0.02 −0.01 −0.01 0.02

(−1.09) (−1.10) (1.20) (−1.05) (−1.07) (1.22)
Commission Rate (%) −0.04∗∗∗ −0.04∗∗∗ −0.07∗∗∗ −0.04∗∗∗ −0.04∗∗∗ −0.07∗∗∗

(−2.97) (−3.00) (−3.98) (−2.99) (−3.02) (−3.99)
Trading Volume, as % of TNA 0.0000 0.0000 0.0001∗ 0.0000 0.0000 0.0001∗

(0.75) (0.78) (1.92) (0.76) (0.79) (1.93)
Size Percentile −0.001∗∗∗ −0.001∗∗∗ 0.001 −0.001∗∗∗ −0.001∗∗∗ 0.001

(−4.11) (−3.99) (1.35) (−4.13) (−4.01) (1.36)
Value Percentile −0.002∗∗∗ −0.002∗∗∗ −0.001∗∗∗ −0.002∗∗∗ −0.002∗∗∗ −0.001∗∗∗

(−10.66) (−10.65) (−2.73) (−10.67) (−10.66) (−2.74)
Momentum Percentile −0.001∗∗ −0.001∗∗ −0.001∗∗ −0.001∗∗ −0.001∗∗ −0.001∗∗

(−2.32) (−2.08) (−2.03) (−2.34) (−2.10) (−2.04)
Time Fixed Effects Yes Yes Yes Yes Yes Yes
Fund Fixed Effects No No Yes No No Yes
Observations 54,331 54,331 54,331 54,331 54,331 54,331
Adjusted R2 0.07 0.08 0.10 0.07 0.08 0.10
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Table 6: The Fund–Centrality Premium when Funds Experience Severe Redemptions

This table examines whether the fund–centrality premium is more pronounced when funds’ trading activities are
primarily driven by liquidity reasons, such as to accommodate large investor redemptions. Specifically, we interact
an indicator variable for contemporaneous large outflows with lagged brokerage network centrality in our baseline
specification as follows:

Return Gapi,t = δ × Centralityi,t−1 × 1(Outflowi,t > 5%) + β × Centralityi,t−1

+ ρ× 1(Outflowi,t > 5%) + γ × Covariatesi,t−1 + αi + θt + εi,t

where 1(Outflowi,t > 5%) is an indicator variable that is equal to 1 if fund i’s outflow during half-year t exceeds five
percent and the rest of the model is the same as in Table 5. Standard errors are clustered at the fund level and the
resulting t-statistics are reported in parentheses. Statistical significance at the 10%, 5%, and 1% level is indicated
by *, **, and ***, respectively.

Dependent variable: Return Gap (%)
(1) (2) (3) (4)

Degree Centrality × 1(Outflow > 5%) 0.14∗∗∗ 0.17∗∗∗

(2.94) (3.19)
Eigenvector Centrality × 1(Outflow > 5%) 0.04∗∗∗ 0.04∗∗∗

(2.89) (2.70)
Degree Centrality 0.10∗∗∗ 0.03

(2.89) (0.67)
Eigenvector Centrality 0.03∗∗∗ 0.01

(2.75) (0.79)
1(Outflow > 5%) −0.03∗∗∗ −0.03∗∗∗ −0.03∗∗∗ −0.03∗∗∗

(−3.32) (−3.25) (−3.23) (−2.78)
log(Fund TNA) −0.01∗∗∗ −0.03∗∗∗ −0.01∗∗∗ −0.03∗∗∗

(−6.87) (−9.71) (−6.87) (−9.65)
log(Family TNA) 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗

(6.20) (2.59) (6.13) (2.60)
Expense Ratio (%) −0.005 0.02 −0.005 0.02

(−0.91) (1.26) (−0.86) (1.30)
Commission Rate (%) −0.04∗∗∗ −0.07∗∗∗ −0.04∗∗∗ −0.07∗∗∗

(−2.94) (−3.96) (−2.98) (−4.00)
Trading Volume, as % of TNA 0.0000 0.0001∗∗ 0.0000 0.0001∗∗

(0.90) (1.97) (0.93) (2.00)
Size Percentile −0.001∗∗∗ 0.001 −0.001∗∗∗ 0.001

(−4.11) (1.35) (−4.13) (1.36)
Value Percentile −0.002∗∗∗ −0.001∗∗∗ −0.002∗∗∗ −0.001∗∗∗

(−10.67) (−2.71) (−10.70) (−2.73)
Momentum Percentile −0.001∗∗ −0.001∗∗ −0.001∗∗ −0.001∗∗

(−2.38) (−2.12) (−2.40) (−2.14)

Time Fixed Effects Yes Yes Yes Yes
Fund Fixed Effects No Yes No Yes
Observations 54,331 54,331 54,331 54,331
Adjusted R2 0.07 0.11 0.07 0.11
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Table 7: The Fund–Centrality Premium For Valuable Clients

This table examines whether the fund–centrality premium is larger for more valuable clients, especially when the
client funds are forced to trade to accommodate large investor redemptions. In unconditional tests presented in
Panel A, we interact a measure of brokerage revenue generating potential with brokerage network centrality in our
baseline specification as follows:

Return Gapi,t = δ × Centralityi,t−1 × Broker Incentivei,t−1 + β × Centralityi,t−1

+ ρ× Broker Incentivei,t−1 + γ × Covariatesi,t−1 + αi + θt + εi,t

where Broker Incentivei,t−1 is our proxy for fund i’s brokerage revenue generating potential as measured by an
indicator variable that is equal to one if fund i’s aggregate dollar commissions during half-year t− 1 is greater than
its top quartile value. As a robustness check, we replace an indicator variable with its continuous counterpart, log of
aggregate dollar commissions in columns (3) and (4). The rest of the model is the same as in Table 5. The independent
variable of interest is Centralityi,t−1×Broker Incentivei,t−1 to tease out the effect of brokers’ incentives on the fund–
centrality premium. In conditional tests presented in Panel B, we add an indicator variable for contemporaneous
large outflows as an additional interaction term. Standard errors are clustered at the fund level and the resulting
t-statistics are reported in parentheses. Statistical significance at the 10%, 5%, and 1% level is indicated by *, **,
and ***, respectively.

Panel A: Baseline
Dependent variable: Return Gap (%)
Broker Incentive: 1(Dollar Commission > Q3) log(Dollar Commission)

(1) (2) (3) (4)
Degree Centrality × Broker Incentive 0.26∗∗∗ 0.04∗

(3.23) (1.96)
Eigenvector Centrality × Broker Incentive 0.05∗ 0.003

(1.66) (0.52)
Degree Centrality 0.03 0.16∗∗∗

(0.53) (2.74)
Eigenvector Centrality 0.02 0.04∗

(1.15) (1.94)
Broker Incentive −0.06∗∗∗ −0.04∗∗ −0.01∗∗∗ −0.01∗

(−3.70) (−2.26) (−2.74) (−1.86)
log(Fund TNA) −0.03∗∗∗ −0.03∗∗∗ −0.03∗∗∗ −0.03∗∗∗

(−8.60) (−8.58) (−6.09) (−5.98)
log(Family TNA) 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗

(2.66) (2.65) (2.62) (2.56)
Expense Ratio (%) 0.02 0.02 0.01 0.02

(1.17) (1.21) (1.14) (1.19)
Commission Rate (%) −0.05∗∗∗ −0.06∗∗∗ −0.04∗ −0.04∗

(−3.00) (−3.08) (−1.96) (−1.91)
Trading Volume, as % of TNA 0.0001∗∗ 0.0001∗∗ 0.0001∗∗ 0.0001∗∗

(2.28) (2.29) (2.30) (2.37)
Size Percentile 0.001 0.001 0.001 0.001

(1.32) (1.34) (1.30) (1.32)
Value Percentile −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(−2.70) (−2.71) (−2.72) (−2.74)
Momentum Percentile −0.001∗∗ −0.001∗∗ −0.001∗∗ −0.001∗∗

(−2.00) (−2.05) (−1.97) (−2.03)
Time Fixed Effects Yes Yes Yes Yes
Fund Fixed Effects Yes Yes Yes Yes
Observations 54,331 54,331 54,331 54,331
Adjusted R2 0.11 0.11 0.11 0.10
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Table 7–Continued

Panel B: Triple Interaction

Dependent variable: Return Gap (%)
Broker Incentive: 1(Dollar Commission > Q3) log(Dollar Commission)

(1) (2) (3) (4)

Degree Centrality × Broker Incentive × 1(Outflow > 5%) 0.28∗∗ 0.05∗

(2.08) (1.86)
Eigenvector Centrality × Broker Incentive × 1(Outflow > 5%) 0.12∗∗∗ 0.02∗∗

(2.74) (2.00)
Degree Centrality × Broker Incentive 0.14 0.01

(1.52) (0.62)
Degree Centrality × 1(Outflow > 5%) 0.11∗ 0.30∗∗∗

(1.90) (3.54)
Eigenvector Centrality × Broker Incentive −0.004 −0.004

(−0.14) (−0.64)
Eigenvector Centrality × 1(Outflow > 5%) 0.02 0.09∗∗∗

(1.27) (3.30)
Broker Incentive × 1(Outflow > 5%) −0.06∗∗ −0.08∗∗∗ −0.01∗∗∗ −0.01∗∗∗

(−2.24) (−2.82) (−2.63) (−2.65)
Degree Centrality −0.01 0.05

(−0.15) (0.69)
Eigenvector Centrality 0.01 −0.0001

(0.61) (−0.01)
Broker Incentive −0.04∗ −0.01 −0.01 −0.002

(−1.95) (−0.39) (−1.29) (−0.48)
1(Outflow > 5%) −0.02∗∗ −0.01 −0.06∗∗∗ −0.06∗∗∗

(−1.98) (−1.40) (−3.70) (−3.46)
log(Fund TNA) −0.03∗∗∗ −0.03∗∗∗ −0.03∗∗∗ −0.03∗∗∗

(−8.63) (−8.54) (−6.19) (−6.02)
log(Family TNA) 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗

(2.62) (2.61) (2.58) (2.51)
Expense Ratio (%) 0.02 0.02 0.02 0.02

(1.24) (1.33) (1.18) (1.26)
Commission Rate (%) −0.05∗∗∗ −0.06∗∗∗ −0.04∗∗ −0.04∗

(−3.00) (−3.12) (−1.98) (−1.96)
Trading Volume, as % of TNA 0.0001∗∗ 0.0001∗∗ 0.0001∗∗ 0.0001∗∗

(2.37) (2.41) (2.39) (2.48)
Size Percentile 0.001 0.001 0.001 0.001

(1.31) (1.32) (1.31) (1.33)
Value Percentile −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(−2.69) (−2.73) (−2.71) (−2.75)
Momentum Percentile −0.001∗∗ −0.001∗∗ −0.001∗∗ −0.001∗∗

(−2.06) (−2.12) (−2.08) (−2.14)

Time Fixed Effects Yes Yes Yes Yes
Fund Fixed Effects Yes Yes Yes Yes
Observations 54,331 54,331 54,331 54,331
Adjusted R2 0.11 0.11 0.11 0.11
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Table 8: The Fund–Centrality Premium For Relationship Clients

This table examines whether the fund–centrality premium is larger for the clients that have established trading
relationships with their brokers, especially when the client funds are forced to trade to accommodate large investor
redemptions. In unconditional tests presented in Panel A, we interact a measure of existing trading relationships
with brokerage network centrality in our baseline specification as follows:

Return Gapi,t = δ × Centralityi,t−1 × Trading Relationshipi,t−1 + β × Centralityi,t−1

+ ρ× Trading Relationshipi,t−1 + γ × Covariatesi,t−1 + αi + θt + εi,t

where Trading Relationshipi,t−1, or simply, Relationshipi,t−1 is our proxy for fund i’s strength of trading relationships
with its current set of brokers, as measured by taking the minimum of a fraction of fund i’ commissions paid to its
broker k during half-year t− 1 (current) and that during t− 3 (a year before) and then summing it over all brokers
currently employed by the fund. Intuitively, Relationshipi,t−1 measures the extent to which fund i’s current set of
brokers overlap with the set of brokers the fund traded through a year before. The rest of the model is the same as
in Table 5. The independent variable of interest is Centralityi,t−1 × Relationshipi,t−1 to tease out the effect of prior
trading relationships on the fund–centrality premium. In conditional tests presented in Panel B, we add an indicator
variable for contemporaneous large outflows as an additional interaction term. Standard errors are clustered at the
fund level and the resulting t-statistics are reported in parentheses. Statistical significance at the 10%, 5%, and 1%
level is indicated by *, **, and ***, respectively.

Panel A: Baseline
Dependent variable: Return Gap (%)

(1) (2) (3) (4)
Degree Centrality × Relationship 0.13 0.12

(1.42) (1.15)
Eigenvector Centrality × Relationship 0.05∗ 0.05∗

(1.82) (1.69)
Degree Centrality 0.07 0.03

(1.15) (0.50)
Eigenvector Centrality 0.01 0.001

(0.66) (0.06)
Relationship −0.01 −0.02 −0.01 −0.03

(−0.55) (−1.07) (−0.86) (−1.51)
log(Fund TNA) −0.01∗∗∗ −0.03∗∗∗ −0.01∗∗∗ −0.03∗∗∗

(−6.98) (−9.71) (−6.99) (−9.72)
log(Family TNA) 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗

(6.18) (2.59) (6.07) (2.61)
Expense Ratio (%) −0.01 0.02 −0.01 0.02

(−1.08) (1.21) (−1.04) (1.25)
Commission Rate (%) −0.04∗∗∗ −0.07∗∗∗ −0.04∗∗∗ −0.07∗∗∗

(−2.99) (−4.00) (−3.03) (−4.04)
Trading Volume, as % of TNA 0.0000 0.0001∗ 0.0000 0.0001∗

(0.73) (1.92) (0.74) (1.93)
Size Percentile −0.001∗∗∗ 0.001 −0.001∗∗∗ 0.001

(−4.09) (1.35) (−4.09) (1.38)
Value Percentile −0.002∗∗∗ −0.001∗∗∗ −0.002∗∗∗ −0.001∗∗∗

(−10.64) (−2.72) (−10.63) (−2.73)
Momentum Percentile −0.001∗∗ −0.001∗∗ −0.001∗∗ −0.001∗∗

(−2.29) (−2.05) (−2.30) (−2.06)
Time Fixed Effects Yes Yes Yes Yes
Fund Fixed Effects No Yes No Yes
Observations 54,331 54,331 54,331 54,331
Adjusted R2 0.07 0.10 0.07 0.10
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Table 8–Continued

Panel B: Triple Interaction

Dependent variable: Return Gap (%)
(1) (2) (3) (4)

Degree Centrality × Relationship × 1(Outflow > 5%) 0.43∗∗ 0.44∗∗

(2.12) (2.06)
Eigenvector Centrality × Relationship × 1(Outflow > 5%) 0.12∗ 0.11∗

(1.87) (1.66)
Degree Centrality × Relationship −0.01 −0.04

(−0.08) (−0.33)
Degree Centrality × 1(Outflow > 5%) −0.09 −0.06

(−0.77) (−0.45)
Eigenvector Centrality × Relationship 0.01 0.01

(0.40) (0.35)
Eigenvector Centrality × 1(Outflow > 5%) −0.02 −0.01

(−0.50) (−0.24)
Relationship × 1(Outflow > 5%) −0.08∗∗ −0.10∗∗∗ −0.08∗∗ −0.09∗∗

(−2.32) (−2.68) (−2.17) (−2.37)
Degree Centrality 0.10 0.05

(1.40) (0.68)
Eigenvector Centrality 0.02 0.004

(0.82) (0.17)
Relationship 0.02 0.02 0.01 0.01

(0.88) (0.75) (0.58) (0.26)
1(Outflow > 5%) 0.01 0.02 0.01 0.02

(0.72) (0.99) (0.57) (0.86)
log(Fund TNA) −0.01∗∗∗ −0.03∗∗∗ −0.01∗∗∗ −0.03∗∗∗

(−6.94) (−9.77) (−6.94) (−9.71)
log(Family TNA) 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗

(6.12) (2.59) (6.02) (2.60)
Expense Ratio (%) −0.005 0.02 −0.005 0.02

(−0.92) (1.27) (−0.86) (1.33)
Commission Rate (%) −0.04∗∗∗ −0.07∗∗∗ −0.04∗∗∗ −0.07∗∗∗

(−2.96) (−3.98) (−3.01) (−4.03)
Trading Volume, as % of TNA 0.0000 0.0001∗ 0.0000 0.0001∗∗

(0.88) (1.96) (0.91) (1.99)
Size Percentile −0.001∗∗∗ 0.001 −0.001∗∗∗ 0.001

(−4.09) (1.37) (−4.09) (1.39)
Value Percentile −0.002∗∗∗ −0.001∗∗∗ −0.002∗∗∗ −0.001∗∗∗

(−10.65) (−2.69) (−10.68) (−2.71)
Momentum Percentile −0.001∗∗ −0.001∗∗ −0.001∗∗ −0.001∗∗

(−2.36) (−2.12) (−2.38) (−2.14)

Time Fixed Effects Yes Yes Yes Yes
Fund Fixed Effects No Yes No Yes
Observations 54,331 54,331 54,331 54,331
Adjusted R2 0.07 0.11 0.07 0.11
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Table 9: The Fund–Centrality Premium When Funds Submit Uninformed Large Orders

This table attempts to generalize our main results in Table 6 by examining whether the fund–centrality premium is
larger when funds’ trading activities are primarily driven by liquidity reasons, for instance, when funds submit large
uninformed orders. First, we identify periods of heavy information-motivated buying and selling activities following
Alexander, Cici, and Gibson (2007). We calculate BF and SF metrics as follows:

BFi,t = BUY Si,t − FLOWi,t

TNAi,t−1
& SFi,t = SELLSi,t + FLOWi,t

TNAi,t−1

where BUY Si,t is fund i’s dollar volume of stock purchases during half-year t, SELLSi,t is fund i’s dollar volume of
stock sales during half-year t, FLOWi,t is fund i’s net investor flow (inflow minus outflow) during half-year t, and
TNAi,t−1 is fund i’s total net assets at the end of half-year t − 1. Exploiting within-fund variation in BF and SF
metrics, Alexander, Cici, and Gibson (2007) show that buy (sell) portfolios with high BF (SF ) tend to outperform
buy (sell) portfolios with low BF (SF ). Since we cannot separately evaluate trading performance associated with
buys and sells, we assign half-years where both BF and SF fall below its respective top quartile value as periods of
uninformed trading. In Panel A, we interact an indicator variable for period of uninformed trading with brokerage
network centrality as follows:

Return Gapi,t = δ × Centralityi,t−1 × 1(BFi,t < Q3 & SFi,t < Q3) + β × Centralityi,t−1

+ ρ× 1(BFi,t < Q3 & SFi,t < Q3) + γ × Covariatesi,t−1 + αi + θt + εi,t

where 1(BFi,t < Q3 & SFi,t < Q3) is an indicator variable that is equal to 1 if both BFi,t and SFi,t fall below its
respective top quartile value during half-year t and the rest of the model is the same as in Table 5. Next, we proxy
for average order sizes using average trade sizes inferred from consecutive portfolio disclosures, adjusting for trading
volume in the market as follows:

Trade Sizei,t = 1
Ni,t

∑
k

| Sharesi,k,t − Sharesi,k,t−1 |
V OL

CRSP
k,t

where Sharesi,k,t is the split-adjusted number of shares held in stock k by fund i at the end of half-year (or quarter) t,
V OL

CRSP
k,t is the average CRSP monthly volume between portfolio disclosures, and the averages are taken over stocks

for which Sharesi,k,t 6= Sharesi,k,t−1. To arrive at the semi-annual figure, we take the average of quarterly numbers,
if two quarterly observations are available. In Panel B, we add as an additional interaction term Trade Sizei,t as an
indicator variable that is equal to 1 if Trade Sizei,t is above its quartile value or as a continuous variable to examine
whether the fund–centrality premium is larger when funds submit uninformed large orders. Standard errors are
clustered at the fund level and the resulting t-statistics are reported in parentheses. Statistical significance at the
10%, 5%, and 1% level is indicated by *, **, and ***, respectively.
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Table 9–Continued

Dependent variable: Return Gap (%)
(1) (2)

Degree Centrality × 1(BF < Q3 & SF < Q3) 0.17∗∗∗

(2.85)
Eigenvector Centrality × 1(BF < Q3 & SF < Q3) 0.04∗∗

(2.04)
Degree Centrality −0.01

(−0.12)
Eigenvector Centrality 0.004

(0.19)
1(BF < Q3 & SF < Q3) −0.02 −0.01

(−1.44) (−0.79)
log(Fund TNA) −0.03∗∗∗ −0.03∗∗∗

(−9.90) (−9.89)
log(Family TNA) 0.01∗∗∗ 0.01∗∗∗

(2.66) (2.68)
Expense Ratio (%) 0.02 0.02

(1.20) (1.22)
Commission Rate (%) −0.07∗∗∗ −0.07∗∗∗

(−3.98) (−4.00)
Trading Volume, as % of TNA 0.0001∗∗ 0.0001∗∗

(2.26) (2.25)
Size Percentile 0.001 0.001

(1.36) (1.35)
Value Percentile −0.001∗∗∗ −0.001∗∗∗

(−2.63) (−2.68)
Momentum Percentile −0.001∗ −0.001∗

(−1.89) (−1.93)

Time Fixed Effects Yes Yes
Fund Fixed Effects Yes Yes
Observations 54,331 54,331
Adjusted R2 0.11 0.11
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Table 9–Continued

Dependent variable: Return Gap (%)
Brokerage Network Centrality: Degree Centrality Eigenvector Centrality

(1) (2) (3) (4)

Centrality × 1(BF < Q3 & SF < Q3) × 1(Trade Size > Q3) 0.31∗∗ 0.08∗

(2.11) (1.67)
Centrality × 1(BF < Q3 & SF < Q3) × Trade Size 0.13∗ 0.04

(1.68) (1.44)
Centrality × 1(BF < Q3 & SF < Q3) 0.09 0.09 0.02 0.02

(1.36) (1.28) (0.91) (0.75)
1(BF < Q3 & SF < Q3) × 1(Trade Size > Q3) −0.05∗ −0.05

(−1.91) (−1.56)
1(BF < Q3 & SF < Q3) × Trade Size −0.02 −0.02

(−1.16) (−1.01)
Centrality × 1(Trade Size > Q3) −0.13 −0.07

(−0.93) (−1.51)
Centrality × Trade Size −0.02 −0.02

(−0.26) (−0.93)
Centrality 0.02 0.002 0.02 0.02

(0.36) (0.03) (0.97) (0.77)
1(BF < Q3 & SF < Q3) −0.002 −0.01 0.002 0.0001

(−0.18) (−0.47) (0.19) (0.01)
1(Trade Size > Q3) 0.02 0.04

(0.74) (1.27)
Trade Size −0.01 0.0002

(−0.71) (0.01)
log(Fund TNA) −0.03∗∗∗ −0.03∗∗∗ −0.03∗∗∗ −0.03∗∗∗

(−9.83) (−8.68) (−9.86) (−8.73)
log(Family TNA) 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗

(2.67) (2.75) (2.68) (2.75)
Expense Ratio (%) 0.02 0.02 0.02 0.02

(1.18) (1.23) (1.20) (1.26)
Commission Rate (%) −0.07∗∗∗ −0.07∗∗∗ −0.07∗∗∗ −0.07∗∗∗

(−3.98) (−3.92) (−4.01) (−3.93)
Trading Volume, as % of TNA 0.0001∗∗ 0.0001∗∗ 0.0001∗∗ 0.0001∗∗

(2.28) (2.42) (2.26) (2.40)
Size Percentile 0.001 0.001 0.001 0.001

(1.30) (0.99) (1.37) (1.09)
Value Percentile −0.001∗∗∗ −0.001∗∗ −0.001∗∗∗ −0.001∗∗∗

(−2.64) (−2.57) (−2.67) (−2.58)
Momentum Percentile −0.001∗ −0.001∗∗ −0.001∗ −0.001∗∗

(−1.92) (−2.00) (−1.94) (−2.00)

Time Fixed Effects Yes Yes Yes Yes
Fund Fixed Effects Yes Yes Yes Yes
Observations 54,331 54,331 54,331 54,331
Adjusted R2 0.11 0.11 0.11 0.11
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58Table 10: A List of Brokerage Mergers (1995-2015)

This table reports a list of twenty six brokerage mergers, including the names of brokers involved in the merger, the merger effective date, the
average brokerage shares pre- and post-merger, and changes in average broker shares around the merger. A broker share is defined as a fraction
of the commission payments to the given broker by the fund. Broker shares are first averaged across funds each month on a rolling basis and then
averaged over months t− 18 to t− 7 for the pre-merger and over months t+ 7 and t+ 18 for the post-merger. We highlight five largest mergers
that will be used in our natural experiment.

Acquiring Broker Acquired Broker
Average Broker Shares (%) Average Broker Shares (%)

Effective Date Broker Name Before After Change Broker Name Before After Change
1997-05-31 MORGAN STANLEY 4.76 5.65 0.89 DEAN WITTER REYNOLDS 1.47 0.57 −0.90
1997-09-02 BT NEW YORK (SUCCESSOR: DEUTSCHE) 0.28 0.44 0.16 ALEX BROWN 1.04 1.16 0.12
1997-11-28 SMITH BARNEY (TRAVELERS) 4.83 5.69 0.86 SALOMON BROTHERS 3.94 0.78 −3.16
1998-06-30 SOCIETE GENERALE SECURITIES 0.18 0.18 −0.004 COWEN 0.54 0.66 0.12
2000-02-24 INSTINET 3.28 2.67 −0.61 LYNCH JONES RYAN 0.42 0.35 −0.07
2000-11-02 GOLDMAN SACHS GROUP 5.72 7.23 1.52 SPEAR LEEDS KELLOGG 0.22 0.35 0.12
2000-11-03 CREDIT SUISSE FIRST BOSTON 4.02 6.40 2.38 DONALDSON LUFKIN JENRETTE 4.40 0.75 −3.65
2000-11-03 UBS WARBURG DILLON READ 2.12 4.31 2.20 PAINE WEBBER 3.75 0.89 −2.85
2001-04-30 ABN-AMRO 1.15 0.77 −0.39 ING BARING-US 7.27 8.83 1.56
2001-09-04 WACHOVIA 0.41 0.50 0.09 FIRST UNION CAPITAL MARKETS 0.18 0.15 −0.03
2002-02-04 BANK OF NEW YORK 0.08 0.27 0.19 AUTRANET 1.02 0.44 −0.58
2003-07-01 WACHOVIA 0.47 0.86 0.40 PRUDENTIAL 1.30 1.05 −0.25
2003-10-31 LEHMAN BROTHERS 5.99 7.33 1.34 NEUBERGER BERMAN 0.14 0.02 −0.12
2003-12-08 UBS AG 5.69 5.11 −0.58 ABN-AMRO 0.90 1.14 0.24
2005-03-31 INSTINET 1.72 1.49 −0.24 BRIDGE TRADING 0.61 0.22 −0.39
2007-02-02 NOMURA HOLDINGS 0.23 0.20 −0.03 INSTINET 1.39 2.26 0.87
2007-10-01 WACHOVIA 0.26 0.13 −0.13 A.G. EDWARDS SONS 0.28 0.004 −0.28
2008-05-30 JPMORGAN CHASE 4.14 7.83 3.69 BEAR STEARNS 4.63 0.17 −4.46
2008-09-22 BARCLAYS 0.04 3.02 2.98 LEHMAN BROTHERS 7.53 0.12 −7.41
2009-01-01 BANK OF AMERICA 0.96 1.09 0.13 MERRILL LYNCH 8.69 6.23 −2.45
2009-10-02 MACQUARIE GROUP 0.42 0.69 0.27 FOX PITT KELTON 0.09 0.002 −0.09
2009-12-31 WELLS FARGO SECURITIES 0.04 0.16 0.12 WACHOVIA 0.12 0.11 −0.01
2010-07-01 STIFEL 0.52 0.60 0.08 THOMAS WEISEL PARTNERS 0.20 0.02 −0.18
2012-04-02 RAYMOND JAMES FINANCIAL 0.37 0.44 0.07 MORGAN KEEGAN 0.27 0.15 −0.12
2013-02-15 STIFEL 0.63 0.73 0.10 KEEFE BRUYETTE WOODS 0.22 0.15 −0.07
2014-09-03 KEYBANK 0.09 0.11 0.03 PACIFIC CREST SECURITIES 0.04 0.01 −0.03



INSTITUTIONAL BROKERAGE NETWORKS 59

Table 11: Testing for Matching Balance

This table reports the cross-sectional means and differences in means of the pre-treatment outcome variables and other
pre-event fund-characteristics for the treated mutual funds and (matched) controls before and after the matching. We
take top ten percent of funds with the largest expected changes in Degree Centrality as the treatment group. Among
the remaining 90% of the sample, we construct the control group by matching on pre-treatment (pre-event) outcome
variables and fund characteristics, using Genetic Matching algorithm proposed by Diamond and Sekhon (2013).
The pre-treatment outcome variables include Degree Centrality and Return Gap and pre-event fund characteristics
include Log(Fund TNA), Expense Ratio, Commission Rate, Trading Volume, as % of TNA, Index Fund (Yes=1),
Size Percentile, Value Percentile, and Momentum Percentile. We choose one year just prior to the event window
as the pre-event period. Return gaps are averaged over the twelve months in the pre-event period and mid-point
values are taken for other variables. The event timelines are as depicted in Figure 4. The t-statistics are reported in
parentheses. Statistical significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

Before Matching After Matching
Variable Treated Control Difference (p-value) Control Difference (p-value)

Panel A: 2000 Brokerage Mergers (Number of treated funds = 102)
Pre-treatment outcomes

Degree Centrality 0.21 0.16 0.05∗∗∗ (< 0.001) 0.20 0.001 (0.49)
Return Gap (%) −0.10 −0.08 −0.02 (0.84) −0.11 0.01 (0.54)

Covariates
log(Fund TNA) 5.67 5.47 0.19 (0.35) 5.99 −0.33 (0.18)
Expense Ratio (%) 0.01 0.01 −0.001∗∗∗ (0.01) 0.01 −0.0001 (0.60)
Commission Rate (%) 0.12 0.14 −0.01 (0.42) 0.14 −0.01 (0.57)
Trading Volume, as % of TNA 160.99 174.71 −13.72 (0.24) 178.77 −17.78 (0.28)
Index Fund (Yes=1) 0.07 0.04 0.03 (0.33) 0.04 0.03 (0.32)
Size Percentile 90.20 88.03 2.17∗∗ (0.04) 88.77 1.43 (0.22)
Value Percentile 26.92 29.75 −2.83∗∗ (0.02) 26.86 0.06 (0.82)
Momentum Percentile 66.37 64.42 1.95 (0.13) 66.69 −0.32 (0.77)

Panel B: 2008 Brokerage Mergers (Number of treated funds = 160)
Pre-treatment outcomes

Degree Centrality 0.17 0.15 0.01∗∗∗ (< 0.001) 0.17 −0.001 (0.63)
Return Gap(%) 0.15 0.14 0.01 (0.49) 0.15 0.003 (0.62)

Covariates
log(Fund TNA) 6.35 5.82 0.53∗∗∗ (< 0.001) 6.23 0.12 (0.18)
Expense Ratio(%) 0.01 0.01 −0.0005∗ (0.09) 0.01 −0.0002 (0.44)
Commission Rate(%) 0.08 0.22 −0.14∗∗∗ (< 0.001) 0.08 −0.003 (0.35)
Trade Volume, as % of TNA 130.52 106.52 23.99∗∗ (0.01) 126.83 3.69 (0.21)
Index Fund (Yes=1) 0.11 0.10 0.003 (0.91) 0.14 −0.03 (0.20)
Size Percentile 85.26 83.84 1.42 (0.12) 85.92 −0.66 (0.19)
Value Percentile 40.23 41.35 −1.12 (0.17) 40.03 0.19 (0.40)
Momentum Percentile 60.89 60.69 0.20 (0.76) 61.15 −0.26 (0.48)
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Table 12: Do brokerage networks improve trading performance? DiD Results

This table reports the difference-in-differences (DiD) results for Degree Centrality and Return Gap before and after
brokerage mergers for the treated mutual funds and their matched controls. The selection of treatment and control
groups, the matching procedure, and the construction of pre-event outcome variables are the same as in Table 11.
We choose one year immediately following the event window as the post-event period. Return gaps are averaged
over the twelve months in the post-event period and mid-point values are taken for Degree Centrality. The event
timelines are as depicted in Figure 4. If we denote the average outcome variables in the treatment (T) and control
(C) groups in the pre- and post-event periods by OT,1, OT,2, OC,1, and OC,2, respectively, the partial effect of change
due to the mergers can be estimated as

DiD = (OT,2 −OT,1)− (OC,2 −OC,1).

The t-statistics are reported in parentheses. Statistical significance at the 10%, 5%, and 1% level is indicated by *,
**, and ***, respectively.

Treated Matched Control DiD
Outcome Measures Before After Before After Mean (t-stat)
Panel A: 2000 Brokerage Mergers
Degree Centrality 0.206 0.235 0.205 0.222 0.013∗∗ (2.01)
Return Gap (%) −0.097 0.063 −0.106 −0.038 0.093∗ (1.67)

Panel B: 2008 Brokerage Mergers
Degree Centrality 0.167 0.193 0.168 0.160 0.034∗∗∗ (8.39)
Return Gap (%) 0.150 0.104 0.147 0.033 0.068∗ (1.87)
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Appendix
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Table A1: Sample of CRSP-Thomson-NSAR Matched Funds

This table reports the total number and aggregate total net assets (TNA) of our CRSP-Thomson-NSAR matched
funds each half-year.

Year First Half Second Half
Total Number Aggregate TNA Total Number Aggregate TNA

of Funds ($ billion) of Funds ($ billion)
1994 421 243.2 512 310.7
1995 617 426.6 759 551.2
1996 812 632.2 868 759.6
1997 941 917.2 991 1, 142.8
1998 1, 065 1, 356.2 1, 122 1, 559.0
1999 1, 260 1, 916.8 1, 306 1, 999.6
2000 1, 426 2, 162.4 1, 476 2, 057.5
2001 1, 572 2, 047.9 1, 608 1, 847.8
2002 1, 679 1, 834.2 1, 773 1, 608.0
2003 1, 774 1, 702.2 1, 803 2, 059.3
2004 1, 825 2, 293.2 1, 845 2, 298.6
2005 1, 845 2, 426.4 1, 897 2, 610.3
2006 1, 950 2, 811.4 2, 039 2, 947.2
2007 2, 106 3, 166.0 2, 137 3, 227.0
2008 2, 127 2, 852.7 2, 089 2, 224.0
2009 2, 017 1, 998.4 2, 012 2, 415.2
2010 1, 968 2, 480.1 1, 921 2, 567.0
2011 1, 891 2, 931.1 1, 852 2, 622.4
2012 1, 823 2, 798.1 1, 757 2, 847.8
2013 1, 730 3, 115.2 1, 684 3, 685.1
2014 1, 649 4, 143.0 1, 629 4, 072.0
2015 1, 614 4, 137.0 1, 568 4, 132.1
2016 1, 565 3, 880.6
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Table A2: When Funds Experience Severe Redemptions: Robustness Checks

This table provides robustness checks for the results reported in Table 6. In Panel A, we use a different cutoff (10%
instead of 5%) to identify large outflow events and the rest of the model is the same as in Table 6. In Panel B, we
repeat our analysis in Table 6 using a sub-sample of funds with fund family TNA is below its top quartile value.
Standard errors are clustered at the fund level and the resulting t-statistics are reported in parentheses. Statistical
significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

Panel A: Using a larger cutoff to define large outflow events

Dependent variable: Return Gap (%)
(1) (2) (3) (4)

Degree Centrality × 1(Outflow > 10%) 0.22∗∗∗ 0.24∗∗∗

(3.60) (3.53)
Eigenvector Centrality × 1(Outflow > 10%) 0.07∗∗∗ 0.07∗∗∗

(3.93) (3.42)
Degree Centrality 0.11∗∗∗ 0.05

(3.31) (1.07)
Eigenvector Centrality 0.03∗∗∗ 0.01

(3.09) (1.04)
1(Outflow > 10%) −0.04∗∗∗ −0.04∗∗∗ −0.05∗∗∗ −0.04∗∗∗

(−3.76) (−3.30) (−4.00) (−3.17)
log(Fund TNA) −0.01∗∗∗ −0.03∗∗∗ −0.01∗∗∗ −0.03∗∗∗

(−6.86) (−9.69) (−6.85) (−9.65)
log(Family TNA) 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗

(6.15) (2.58) (6.08) (2.59)
Expense Ratio (%) −0.01 0.02 −0.01 0.02

(−1.01) (1.24) (−0.95) (1.28)
Commission Rate (%) −0.04∗∗∗ −0.07∗∗∗ −0.04∗∗∗ −0.07∗∗∗

(−2.95) (−3.99) (−2.99) (−4.01)
Trading Volume, as % of TNA 0.0000 0.0001∗∗ 0.0000 0.0001∗∗

(0.95) (1.99) (0.97) (2.00)
Size Percentile −0.001∗∗∗ 0.001 −0.001∗∗∗ 0.001

(−4.19) (1.34) (−4.21) (1.35)
Value Percentile −0.002∗∗∗ −0.001∗∗∗ −0.002∗∗∗ −0.001∗∗∗

(−10.67) (−2.74) (−10.71) (−2.75)
Momentum Percentile −0.001∗∗ −0.001∗∗ −0.001∗∗ −0.001∗∗

(−2.38) (−2.09) (−2.39) (−2.10)

Time Fixed Effects Yes Yes Yes Yes
Fund Fixed Effects No Yes No Yes
Observations 54,331 54,331 54,331 54,331
Adjusted R2 0.07 0.11 0.07 0.11
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Table A2–Continued

Panel B: Excluding funds that belong to large fund families

Dependent variable: Return Gap (%)
(1) (2) (3) (4)

Degree Centrality × 1(Outflow > 5%) 0.13∗∗ 0.14∗∗

(2.51) (2.40)
Eigenvector Centrality × 1(Outflow > 5%) 0.05∗∗∗ 0.04∗∗

(2.77) (2.23)
Degree Centrality 0.13∗∗∗ 0.03

(3.18) (0.54)
Eigenvector Centrality 0.03∗∗∗ 0.01

(2.87) (0.46)
1(Outflow > 5%) −0.03∗∗∗ −0.03∗∗∗ −0.03∗∗∗ −0.03∗∗∗

(−3.05) (−2.96) (−3.26) (−2.78)
log(Fund TNA) −0.01∗∗∗ −0.04∗∗∗ −0.01∗∗∗ −0.04∗∗∗

(−6.10) (−8.85) (−6.11) (−8.81)
log(Family TNA) 0.01∗∗∗ 0.01∗∗ 0.01∗∗∗ 0.01∗∗

(3.89) (2.07) (3.90) (2.09)
Expense Ratio (%) −0.003 0.01 −0.003 0.01

(−0.49) (0.34) (−0.43) (0.36)
Commission Rate (%) −0.04∗∗∗ −0.07∗∗∗ −0.04∗∗∗ −0.07∗∗∗

(−2.84) (−4.02) (−2.89) (−4.05)
Trading Volume, as % of TNA −0.0000 0.0001 −0.0000 0.0001

(−0.27) (1.00) (−0.25) (1.01)
Size Percentile −0.001∗∗∗ 0.001 −0.001∗∗∗ 0.001

(−4.20) (1.51) (−4.22) (1.51)
Value Percentile −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗

(−10.16) (−3.13) (−10.19) (−3.15)
Momentum Percentile −0.001∗∗∗ −0.001∗ −0.001∗∗∗ −0.001∗

(−2.63) (−1.89) (−2.65) (−1.91)

Time Fixed Effects Yes Yes Yes Yes
Fund Fixed Effects No Yes No Yes
Observations 40,743 40,743 40,743 40,743
Adjusted R2 0.06 0.10 0.06 0.10
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Table A3: Testing for Matching Balance

This table reports the cross-sectional means and differences in means of the pre-treatment outcome variables and other
pre-event fund-characteristics for the treated mutual funds and (matched) controls before and after the matching.
We take top ten percent of funds with the largest expected changes in Eigenvector Centrality as the treatment group.
Among the remaining 90% of the sample, we construct the control group by matching on pre-treatment (pre-event)
outcome variables and fund characteristics, using Genetic Matching algorithm proposed by Diamond and Sekhon
(2013). The pre-treatment outcome variables include Eigenvector Centrality and Return Gap and pre-event fund
characteristics include Log(Fund TNA), Expense Ratio, Commission Rate, Trading Volume, as % of TNA, Index
Fund (Yes=1), Size Percentile, Value Percentile, and Momentum Percentile. We choose one year just prior to the
event window as the pre-event period. Return gaps are averaged over the twelve months in the pre-event period
and mid-point values are taken for other variables. The event timelines are as depicted in Figure 4. The t-statistics
are reported in parentheses. Statistical significance at the 10%, 5%, and 1% level is indicated by *, **, and ***,
respectively.

Before Matching After Matching
Variable Treated Control Difference (p-value) Control Difference (p-value)

Panel A: 2000 Brokerage Mergers (Number of treated funds = 102)
Pre-treatment outcomes

Eigenvector Centrality 0.68 0.50 0.18∗∗∗ (< 0.001) 0.67 0.01 (0.37)
Return Gap (%) −0.03 −0.09 0.05 (0.54) −0.03 −0.01 (0.82)

Covariates
log(Fund TNA) 5.27 5.52 −0.25 (0.18) 5.29 −0.02 (0.70)
Expense Ratio (%) 0.01 0.01 −0.001 (0.13) 0.01 −0.0001 (0.78)
Commission Rate (%) 0.18 0.13 0.06∗∗ (0.04) 0.18 0.003 (0.31)
Trading Volume, as % of TNA 158.43 175.00 −16.57 (0.18) 152.24 6.19 (0.32)
Index Fund (Yes=1) 0.07 0.04 0.03 (0.33) 0.03 0.04 (0.16)
Size Percentile 89.72 88.09 1.63 (0.13) 89.03 0.69 (0.57)
Value Percentile 27.76 29.66 −1.90 (0.13) 28.53 −0.77 (0.47)
Momentum Percentile 65.69 64.49 1.19 (0.36) 64.89 0.80 (0.30)

Panel B: 2008 Brokerage Mergers (Number of treated funds = 161)
Pre-treatment outcomes

Eigenvector Centrality 0.60 0.49 0.10∗∗∗ (< 0.001) 0.60 0.001 (0.71)
Return Gap(%) 0.17 0.13 0.03 (0.11) 0.16 0.01 (0.41)

Covariates
log(Fund TNA) 6.50 5.80 0.70∗∗∗ (< 0.001) 6.46 0.03 (0.45)
Expense Ratio(%) 0.01 0.01 −0.0005 (0.11) 0.01 0.0001 (0.85)
Commission Rate(%) 0.08 0.22 −0.15∗∗∗ (< 0.001) 0.13 −0.05 (0.13)
Trade Volume, as % of TNA 132.59 106.27 26.32∗∗∗ 0.003 131.14 1.45 (0.53)
Index Fund (Yes=1) 0.11 0.10 0.01 (0.73) 0.12 −0.01 (0.82)
Size Percentile 85.10 83.85 1.25 (0.16) 85.64 −0.54 (0.66)
Value Percentile 40.08 41.37 −1.29 (0.12) 40.18 −0.10 (0.60)
Momentum Percentile 60.88 60.69 0.19 (0.76) 61.71 −0.84 (0.28)
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Table A4: Do brokerage networks improve trading performance? DiD Results

This table reports the difference-in-differences (DiD) results for Eigenvector Centrality and Return Gap before and
after brokerage mergers for the treated mutual funds and their matched controls. The selection of treatment and
control groups, the matching procedure, and the construction of pre-event outcome variables are the same as in
Table A3. We choose one year immediately following the event window as the post-event period. Return gaps are
averaged over the twelve months in the post-event period and mid-point values are taken for Eigenvector Centrality.
The event timelines are as depicted in Figure 4. If we denote the average outcome variables in the treatment (T)
and control (C) groups in the pre- and post-event periods by OT,1, OT,2, OC,1, and OC,2, respectively, the partial
effect of change due to the mergers can be estimated as

DiD = (OT,2 −OT,1)− (OC,2 −OC,1).

The t-statistics are reported in parentheses. Statistical significance at the 10%, 5%, and 1% level is indicated by *,
**, and ***, respectively.

Treated Matched Control DiD
Outcome Measures Before After Before After Mean (t-stat)

Panel A: 2000 Brokerage Mergers
Eigenvector Centrality 0.677 0.662 0.671 0.680 0.053∗∗ (2.59)
Return Gap (%) −0.034 0.026 −0.029 −0.076 0.108∗ (1.68)

Panel B: 2008 Brokerage Mergers
Eigenvector Centrality 0.596 0.679 0.595 0.592 0.090∗∗∗ (5.68)
Return Gap (%) 0.167 0.107 0.159 0.024 0.075∗∗ (1.98)
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1 Introduction

A traditional view of market liquidity, going at least as far back as Bagehot (1971), posits that

one of the causes of illiquidity is adverse selection: “The essence of market making, viewed

as a business, is that in order for the market maker to survive and prosper, his gains from

liquidity-motivated transactors must exceed his losses to information motivated transactors.

[...] The spread he sets between his bid and asked price affects both: the larger the spread,

the less money he loses to information-motivated, transactors and the more he makes from

liquidity-motivated transactors.”

This intuition has later been made precise by models such as Glosten and Milgrom (1985,

henceforth GM85), in which a competitive risk-neutral dealer sequentially sets bid and ask

prices in a risky asset, and makes zero expected profits in each trading round. Traders are

selected at random from a population that contains a fraction ρ of informed traders, and must

trade at most one unit of the asset. The asset liquidates at a value v that is constant and is

either zero or one. In equilibrium, the bid-ask spread is wider when the informed share ρ is

higher: there is more adverse selection, hence the dealer must set a larger bid-ask spread to

break even.

This intuition, however, must be modified once we consider the dynamics of the bid-ask

spread. A larger informed share also means that orders carry more information, which over

time reduces the uncertainty about v and thus puts downward pressure on the bid-ask spread.

We call this last effect dynamic efficiency. This effect is already present in GM85, who observe

that a larger informed share causes initially a larger bid-ask spread, but also causes the bid-ask

spread to decrease faster to its eventual value, which is zero (when v is fully learned).

A natural question is then: to what extent does dynamic efficiency reduce the traditional

adverse selection? To answer this question, we extend the framework of GM85 to allow v to

move over time according to a random walk vt.
1 To obtain closed-form results, we assume

that the increments of vt are normally distributed with volatility σv, called the fundamental

1In GM85 both types of traders are willing to trade in each period (the informed because v is always
outside the bid-ask spread, the uninformed for exogenous reasons), hence a trader is chosen at random among
the informed and uninformed. When vt is moving, there are times when the informed traders are not willing
to trade (vt is within the spread), hence a trader is chosen at random among the uninformed.
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volatility. We chose a moving value for two reasons. First, this is a realistic assumption in

modern financial markets, where relevant information arrives essentially at a continuous rate.

Second, we want to study the long-term evolution of the bid-ask spreads, and this long-term

analysis is trivial when vt is constant, as the dealer eventually fully learns v. Note that we

are interested in the long run because (as we show later) in the short run the equilibrium is

similar to GM85, but in the long run it converges to the stationary equilibrium, which has

novel properties.

The first property of the stationary equilibrium is that the dealer’s uncertainty about vt is

constant. More precisely, we define the public density at t to be the dealer’s posterior density

of vt just before trading at t. We also define the public mean and public volatility to be,

respectively, the mean and standard deviation of the public density.2 Thus, in a stationary

equilibrium, the public volatility (which is a measure of the dealer’s uncertainty) is constant.

The second property of the stationary equilibrium is that the informed share is inversely

related to the public volatility. The intuition is simple: when the informed share is low, the

order flow carries little information, and thus the public volatility is large.3

A surprising property of the stationary equilibrium is that the informed share has no effect

on the bid-ask spread. To understand this result, consider a small informed share, say 1%.

Suppose a buy order arrives, and the dealer estimates how much to update the public mean (in

equilibrium this update is half of the bid-ask spread). There are two opposite effects. First, it

is very unlikely that the buy order comes from an informed trader (with only 1% chance). This

is the adverse selection effect: a low informed share makes the dealer less concerned about

adverse selection, which leads to a smaller update of the public mean, and hence decreases

the bid-ask spread. But, second, if the buy order does come from an informed trader, a large

public volatility translates into the dealer knowing that, on average, the informed trader must

have observed a value far above the public mean. This is the dynamic efficiency effect: a low

informed share leads to a larger update of the public mean, and hence increases the bid-ask

2To simplify the analysis, we assume here (as in Section 4) that the dealer always considers the public
density to be normal: after observing the order flow at t, the dealer computes correctly the first two moments
of the public density at t+ 1, but not the higher moments, and thus considers the new density to be normal
as well. In Section 5, we show that the main results remain robust with exact learning.

3The existence itself of a stationary limit is not entirely obvious. Indeed, it might be possible for the
public volatility to grow indefinitely, without any finite limit.
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spread. At the other end, a large informed share means that the dealer learns well about the

asset value (the public volatility is small), and therefore the bid-ask spread tends to be small.

It turns out that the two opposite effects exactly offset each other. As explained above, this

translates into the fact that the magnitude of the updates in public mean caused by order flow

is independent of the informed share. This result depends crucially on the equilibrium being

stationary. To understand why, consider an equilibrium which is not necessarily stationary. If

there was no order flow at t, then the dealer’s uncertainty (the public volatility) would increase

from t to t + 1 as the asset value diffuses. But the order flow at t contains information and

hence reduces the uncertainty at t + 1. In a stationary equilibrium the uncertainty increase

caused by diffusion must cancel the uncertainty decrease caused by order flow. Thus, as the

value diffusion is independent of the informed share, the information content of the order

flow must also be independent of the informed share. But this implies that the magnitude of

public mean updates is independent of the informed share.

Our next result is that, for any initial public volatility, the equilibrium converges to the

stationary equilibrium. In particular, consider a wide initial public volatility. Then, as the

order flow starts providing information to the dealer, the public volatility starts decreasing

toward its stationary value. The same is true for the bid-ask spread, which in a non-stationary

equilibrium is always proportional to the public volatility. This phenomenon is similar to the

GM85 equilibrium, except that there the stationary public volatility and bid-ask spread are

both zero. This illustrates the statement made above, that the non-stationary equilibrium (the

“short run”) resembles GM85, while the stationary equilibrium (the “long run”) is different

and produces novel insights.

Studying the equilibrium behavior after various types of shocks provides a few testable

implications. First, consider a positive shock to the informed share (e.g., the stock is now

studied by more hedge funds). Then, the adverse selection effect suddenly becomes stronger,

and as a result the bid-ask spread temporarily increases. In the long run, though, the bid-

ask spread reverts to its stationary value, which does not change. At the same time, the

public volatility gradually decreases to its new level, which is lower due to the increase in the

informed share. Second, consider a negative shock to the current public volatility (e.g., public
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news about the current asset value). Then, the bid-ask spread follows the public volatility

and drops immediately, after which it increases gradually to its old stationary level. Third,

consider a positive shock to the fundamental volatility (e.g., all future uncertainty about the

asset increases). Then, the bid-ask spread follows the public volatility and increases gradually

to its new stationary level.

Based on our results, the picture on dynamic adverse selection that emerges is that liq-

uidity is more strongly affected not by the informed share (the intensive margin), but by the

fundamental volatility (the extensive margin). By contrast, price discovery (measured by the

public volatility) is strongly affected by both informed share and fundamental volatility. This

suggests that the presence of privately informed traders can be more precisely identified by

proxies of the current level of uncertainty, rather than by illiquidity measures such as the

bid-ask spread (which is used by Collin-Dufresne and Fos, 2015).

A surprising outcome of our theory is that a lower level of uncertainty (lower public

volatility) can occur if either the informed share becomes larger (more privately informed

traders arrive), or more precise public news arrives.4 We can disentangle the two scenarios,

however, by examining the effect on the bid-ask spread: more precise public news should

reduce it, while a larger informed share should have no effect.

Our paper contributes to the literature of dynamic models of adverse selection.5 To our

knowledge, this paper is the first to study the effect of stationarity in dealer models of the

Glosten and Milgrom (1985) type.6 By contrast, several stationary models of the Kyle (1985)

type are analyzed for instance by Chau and Vayanos (2008) and Caldentey and Stacchetti

(2010). The focus of these models, however, is not liquidity but price discovery: it turns out

that in the limit the market in this models becomes strong-form efficient, as the insider trades

very aggressively.

The paper speaks to the literature on the identification of informed trading and in par-

ticular on the identification of insider trading. Collin-Dufresne and Fos (2015, 2016) show

4In Section 6.2 we solve a simple extension of our model with public news, and show that more precise
public news translates into a lower public volatility.

5See for instance the survey of Foucault, Pagano, and Röell (2013) and the references therein.
6Glosten and Putnins (2016) study the welfare effect of the informed share in the Glosten and Milgrom

(1985) model, but they do not consider the effect of stationarity.
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both empirically and theoretically that times when insiders trade coincide with times when

liquidity is actually stronger (and in particular bid-ask spreads decline). They attribute this

finding to the action of discretionary insiders who trade when they expect a larger presence

of liquidity (noise) traders. During those times the usual positive effect of noise traders on

liquidity dominates, and thus bid-ask spreads decline despite there being more informed trad-

ing. By contrast, our effect works even when the noise trader activity is constant over time,

as long as there is enough time for the equilibrium to become stationary.

The paper is organized as follows. Section 2 describes the model (in which the value

follows a random walk). Section 3 shows how to compute the equilibrium when the dealer

is fully Bayesian. Section 4 studies in detail the model in which the dealer is approximately

Bayesian, and describes the stationary and non-stationary equilibria. Section 5 verifies how

well the approximate equilibrium approaches the exact equilibrium. Section 7 concludes. All

proofs are in the Appendix. The Internet Appendix contains a discussion of general dealer

models, and an application to a model in which the fundamental value switches randomly

between zero and one.

2 Environment

The model is similar to GM85, except that the fundamental value moves according to a

random walk:

vt+1 = vt + εt+1, with εt
IID∼ N (·, 0, σv) . (1)

There is a single risky asset, and time is discrete and infinite. Trading in the risky asset is

done on an exchange, where before each time t = 0, 1, 2, . . . a dealer posts two quotes: the ask

price (or simply ask) At, and the bid price (or simply bid) Bt. Thus, a buy order at t executes

at At, while a sell order at t executes at Bt. The dealer (referred to in the paper as “she”) is

risk neutral and competitive, and therefore makes zero expected profits from each trade.

The buy or sell orders are submitted by a trading population with a fraction ρ ∈ (0, 1) of

informed traders and a fraction 1− ρ of uninformed traders. At each t = 0, 1, . . . a trader is

selected at random from the population willing to trade, and can trade at most one unit of
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the asset. An uninformed trader at t is always willing to trade, and is equally likely to buy

or to sell.7 An informed trader at t who observes the value vt either (i) submits a buy order

if vt > At, (ii) submits a sell order if vt < Bt, (iii) is not willing to trade if vt ∈ [Bt, At]. If

case (iii) occurs, an uninformed trader is selected, as no informed trader is willing to trade.

The dealer’s uncertainty about the fundamental value is summarized by the public density,

which is the density of vt just before trading at t, conditional on all the order flow available

at t, that is, the sequence of orders submitted at times 0, 1, . . . , t−1. Denote by φt the public

density, by µt its mean (called the public mean) and by σt its standard deviation (called the

public volatility). The initial density φ0 is assumed to be rapidly decaying at infinity.8 In

the rest of the paper, by “density” we typically include the requirement that the density be

rapidly decaying. To avoid cumbersome language, we make this requirement explicit only

when we state the formal results.

3 Equilibrium

We prove the existence of an equilibrium of the model in two steps. First, for each t =

0, 1, 2, . . . we start with an public density φt, an ask At, a bid Bt < At, and compute the

public density φt+1 after a buy or sell order. Second, for any public density φt we show that

there exists an ask-bid pair (At, Bt), meaning that the ask At and the bid Bt satisfy the

dealer’s pricing conditions which require that her expected profit from trading at t is zero.

The ask-bid pair (At, Bt) is not necessarily unique, and we choose the pair with the ask closest

to the public mean.

7A standard way to endogenize this assumption is to introduce relative private valuations for the unin-
formed traders. For instance, if a trader expects the value to be µt and has a relative private valuation larger
than At − µt (which in equilibrium is half the bid-ask spread), the trader is always willing to buy at At.

8A function f is rapidly decaying (at infinity) if it is smooth and satisfies limv→±∞ |v|Mf (N)
0 (v) = 0, where

f (N) is the N -th derivative of f . The space S of rapidly decaying functions is called the Schwartz space. Any
normal density belongs to S, and the convolution of two densities in S also belongs to S.
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3.1 Evolution of the Public Density

Let φt be the public density of vt before trading at t, and let At > Bt be, respectively, the ask

and bid at t (not necessarily satisfying the dealer’s pricing conditions). Suppose a buy or sell

order Ot ∈ {B, S} arrives at t. Let 1P be the indicator function, which is one if P is true and

zero if P is false. Conditional on vt = v, the probability of observing the a buy order at t is

gt(B, v) = ρ1v>At + ρ
2
1v∈[Bt,At] + 1−ρ

2
. (2)

To see this, consider the following cases:

• If v ∈ [Bt, At], the informed traders are not willing to trade, and an uninformed trader

submits a buy order with probability 1
2
. Then, gt(B, v) = ρ× 0 + ρ

2
× 1 + 1−ρ

2
= 1

2
.

• If v /∈ [Bt, At], an informed trader (chosen with probability ρ) submits a buy order with

probability 1v>At , while an uninformed trader (chosen with probability 1− ρ) submits

a buy order with probability 1
2
. Then, gt(B, v) = ρ1v>At + ρ

2
× 0 + 1−ρ

2

Similarly, the probability of observing a sell order at t is

gt(S, v) = ρ1v<Bt + ρ
2
1v∈[Bt,At] + 1−ρ

2
. (3)

The next result describes the evolution of the public density.

Proposition 1. Consider a rapidly decaying public density φt, and an ask-bid pair with

At > Bt. After observing an order Ot ∈ {B, S}, the density of vt is ψt(v|Ot), where

ψt(v|B) =

(
ρ1v>At + ρ

2
1v∈[Bt,At] + 1−ρ

2

)
· φt(v)

ρ
2
(1− Φt(At)) + ρ

2
(1− Φt(Bt)) + 1−ρ

2

,

ψt(v|S) =

(
ρ1v<Bt + ρ

2
1v∈[Bt,At] + 1−ρ

2

)
· φt(v)

ρ
2
Φt(At) + ρ

2
Φt(Bt) + 1−ρ

2

,

(4)

where Φt is the cumulative density function corresponding to φt. The public density at t + 1
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is rapidly decaying, and satisfies

φt+1(w|Ot) =

∫ +∞

−∞
ψt(v|Ot)N (w − v, 0, σv)dv =

(
ψt(·|Ot) ∗ N (·, 0, σv)

)
(w), (5)

where “∗” denotes the convolution of two densities.

Proposition 1 shows how the public density evolves once a particular order (buy or sell)

is submitted at t. Note, however, that this result does not assume anything about the ask

and bid other than At > Bt, so in principle these can be chosen arbitrarily. In equilibrium,

however, these prices must satisfy the dealer’s pricing conditions, namely that the dealer’s

expected profits at t must be zero.

In the next section (Section 3.2) we impose these conditions and we show how to determine

the equilibrium ask and bid. Then, Proposition 1 allows us to describe the whole evolution of

the public density, conditional on the initial density φ0 and the sequence of orders O0,O1, . . .

that have been submitted.

3.2 Ask and Bid Prices

Let φt be the public density of vt before trading at t. We define an ask-bid pair (At, Bt) as

a pair of ask and bid satisfying the pricing conditions of the dealer. As the dealer is risk

neutral and competitive, the pricing conditions are: (i) the ask At is the expected value of

vt conditional on a buy order at t, and (ii) the bid Bt is the expected value of vt conditional

on a sell order at t. Using the previous notation, the dealer’s pricing conditions are that At

is the mean of ψt(v|B), the posterior density of vt after observing a buy order at t; and Bt is

the mean of ψt(v|S), the posterior density after observing a sell order at t. Thus, the dealer’s

pricing conditions are equivalent to

At =

∫ +∞

−∞
vψt(v|B)dv, Bt =

∫ +∞

−∞
vψt(v|S)dv. (6)

For future use, we record the following straightforward result.
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Corollary 1. The pair (At, Bt) is an ask-bid pair if and only if the following equations are

satisfied:

At = µt+1,B, Bt = µt+1,S, with µt+1,Ot =

∫ +∞

−∞
wφt+1(w|Ot)dw, Ot = {B, S}. (7)

The next result shows that the existence of an ask-bid pair is equivalent to solving a 2× 2

system of nonlinear equations. Suppose µt is the mean of φt. For (A,B) ∈ (µt,∞)×(−∞, µt),

define the functions:

F (A,B) =
Θt(A) + Θt(B)

A− µt
− 1 + ρ

ρ
+ Φt(A) + Φt(B),

G(A,B) =
Θt(A) + Θt(B)

µt −B
− 1− ρ

ρ
− Φt(A)− Φt(B),

(8)

where Φt is the cumulative density associated to φt, and Θt is defined by

Θt(v) =

∫ v

−∞
(µt − w)φt(w)dw. (9)

The function Θt is strictly positive everywhere and approaches zero at infinity on both sides.9

Proposition 2. Consider a rapidly decaying public density φt, with mean µt. Then, the

existence of an ask-bid pair is equivalent to finding a solution (A,B) ∈ (µt,∞)× (−∞, µt) of

the system of equations:

F (A,B) = 0, G(A,B) = 0. (10)

A solution of (10) always exists. Among the set of ask-bid pairs (A,B) there is a unique one

for which A is closest to µt.

The last statement in Proposition 2 shows that one can choose a unique ask-bid pair based

on the criterion that the ask A be the closest to the public mean µt. Denote this pair by

(At, Bt). In the rest of the paper, we assume that this is indeed the ask-bid pair chosen by

the dealer.10

9As φt is rapidly decaying, Θt(−∞) is equal to zero. The definition of µt implies that Θt(+∞) =∫ +∞
−∞ (µt − w)φt(w) = µt −

∫ +∞
−∞ wφt(w) = 0. Also, Θ′t(v) = (µt − v)φt(v), hence Θt(v) is increasing below µt

and decreasing above µt. As Θt(±∞) = 0, the function Θt is strictly positive everywhere.
10In principle, the equations in (10) might have multiple solutions, meaning that one could manufacture an
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4 Equilibrium with Approximate Bayesian Inference

In this section, we assume that at each step the dealer approximates the public density with a

normal density such that the first two moments are correctly computed. Specifically, suppose

that the dealer regards vt to be distributed as

φat (v) = N (v, µt, σt). (11)

After the dealer observes an order Ot at t, denote by φt+1(w|Ot) the exact density of vt+1

conditional on the past order flow including Ot, and by µt+1,Ot and σt+1,Ot its mean and

standard deviation, respectively. Then, before trading at t + 1 the dealer regards vt+1 to be

distributed as

φat+1(w|Ot) = N
(
w, µt+1,Ot , σt+1,Ot

)
. (12)

Thus, we assume that the dealer continues to make the approximation at each step:

φt = φat . (13)

Section 5 discusses the accuracy of this approximation. For simplicity, we continue to refer

to φt(v) as the public density, µt as the public mean, and σt as the public volatility.

4.1 Evolution of the Public Density

Proposition 3. Suppose the public density at t = 0, 1, 2, . . . is φt(v) = N (v, µt, σt). After

observing Ot ∈ {B, S}, the posterior mean and volatility at t+ 1 satisfy

µt+1,B = µt + δσt, µt+1,S = µt − δσt, σt+1,B = σt+1,S =
√

(1− δ2)σ2
t + σ2

v . (14)

public density φt for which there is more that one corresponding ask-bid pair. Numerically, we have computed
the sequence of public densities that starts with a normal density φ0 and is associated by an arbitrary sequence
of orders, but we have not yet been able to encounter a non-unique ask-bid pair. Nevertheless, we must account
for the possibility that such non-uniqueness may in fact arise.
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where δ is defined by:

δ = g−1(2ρ), with g(x) =
x

N (x, 0, 1)
. (15)

There is a unique ask: At = µt + δσt and unique bid: Bt = µt− δσt, and the bid-ask spread is

st = At −Bt = 2δσt. (16)

We now investigate whether the public density reaches a steady state, in the sense that

its shape converges to a particular density. As the mean µt evolves according to a random

walk, we must demean the public density and focus on its standard deviation σt. The next

result shows that the public volatility σt converges to a particular value, σ∗, regardless of the

initial value σ0.

Proposition 4. For any t = 0, 1, 2, . . . the public volatility satisfies

σ2
t = σ2

∗ +
(
σ2

0 − σ2
∗
)

(1− δ2)t, (17)

where

σ∗ =
σv
δ

=
σv

g−1(2ρ)
. (18)

For any initial value σ0 and any sequence of orders, the public volatility σt monotonically

converges to σ∗, and the bid-ask spread monotonically converges to

s∗ = 2σv. (19)

Thus, Proposition 4 shows that in the long run the equilibrium approaches a particular

stationary equilibrium, which we analyze next.

4.2 Stationary Equilibrium

We define a stationary equilibrium an equilibrium in which the public volatility σt is constant.

According to Proposition 4, if the initial density is φ0(v) = N (v, µ0, σ∗), then all subsequent
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public densities have the same volatility, namely the stationary volatility σ∗. We now analyze

the properties of the stationary equilibrium.

Corollary 2. In the stationary equilibrium, the public volatility σ∗ is decreasing in the fraction

of informed trading ρ, while the bid-ask spread s∗ does not depend on ρ. Both σ∗ and s∗ are

increasing in the fundamental volatility σv.

Intuitively, an increase in the fundamental volatility σv raises the public volatility as the

dealer’s knowledge about the fundamental value becomes more imprecise. It also increases

the adverse selection overall for the dealer, hence she increases the bid-ask spread. Moreover,

a decrease in the fraction of informed trading ρ means that the order flow becomes less infor-

mative, and therefore the dealer’s knowledge about the fundamental value is more imprecise

(σ∗ is large).

The surprising result is that the stationary bid-ask spread is independent of ρ. This is

equivalent to the public mean update being independent of ρ. Indeed, the public mean evolves

according to

µt+1,B = µt + σv, µt+1,S = µt − σv. (20)

Thus, the bid-ask spread is s∗ = (µt + σv) − (µt − σv) = 2σv. To understand the intuition

behind this result, consider the case when ρ is low. Suppose the dealer observes a buy order

at t. As ρ is low, there are two effects on the size of the public mean update. The first effect

is negative: the trader at t is unlikely to be informed, which decreases the size of the update.

This is the traditional adverse selection effect from models such as GM85. The second effect

is positive: when the trader at t is informed, he must have observed a large fundamental

value vt, as the uncertainty in vt (measured by the public volatility σ∗) is also large. This

we call the dynamic efficiency effect: more informed traders create over time a more precise

knowledge about the fundamental value, and thus reduce the effect of informational updates.

It turns out that the dynamic efficiency effect exactly cancels the adverse selection effect

in a stationary setup, and as a result the magnitude of the public mean updates due to

order flow is independent of ρ. To understand why, consider an equilibrium which is not

necessarily stationary. If there was no order flow at t, then the dealer’s uncertainty (the

public volatility) would increase from t to t+ 1 as the fundamental value diffuses. But there
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is order flow at t, which provides information to the dealer and hence reduces uncertainty at

t+1. In a stationary equilibrium the public uncertainty stays constant. Thus, as the increase

in uncertainty due to value diffusion is independent of the informed share ρ, the decrease in

uncertainty due to order flow should also be independent of ρ. But an order flow information

content that is independent of ρ translates into the magnitude of public mean updates also

being independent of ρ.

Formally, the decrease in uncertainty due to the order Ot at t can be evaluated by com-

paring the prior public density φt(v) and the posterior density ψt(v|Ot). One measure of the

decrease in uncertainty is how much the public mean is updated after a buy or sell order

(which are equally likely). But (20) implies that this update is ±σv, which from the point

of view of the information at t is a binary distribution, with standard deviation σv which is

indeed independent of ρ. Note that we have also essentially proved the following result.

Corollary 3. In the stationary equilibrium, the volatility of the change in public mean is

constant and equal to σv.

This result is in fact true quite generally. Indeed, in Appendix B we prove that for any

filtration problem in which the variance remains constant over time the volatility of the change

in public mean must equal the fundamental volatility.

4.3 Liquidity Dynamics

In this section we analyze the evolution of the public volatility and the bid-ask spread after

a shock to either the public volatility σt, the fundamental volatility σv, or the fraction of

informed trading ρ. We are also interested in how quickly the equilibrium converges to the

stationary equilibrium. In general, the speed of convergence of a sequence xt that converges

to a limit x∗ is defined as the limit ratio

S = lim
t→∞

|x2
t − x2

∗|
|x2
t+1 − x2

∗|
, (21)

provided that the limit exists. The next result computes the speed of convergence for several

variables of interest.
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Corollary 4. The public volatility, public variance and bid-ask spread have the same speed of

convergence:

S =
1

1− δ2
. (22)

Moreover, S is increasing in the fraction of informed trading ρ.

Corollary 4 shows that the variables of interest have the same speed of convergence S,

and we can thus call S simply as the convergence speed of the equilibrium. Another result of

Corollary 4 is that a larger fraction of informed trading ρ implies a faster convergence speed of

the equilibrium to its stationary value. This is intuitive, as more informed trading helps the

dealer make quicker dynamic inferences. Note that when ρ = 1, equation (15) implies that

δ = g−1(2) ≈ 0.647, thus the maximum value of δ is less than one. Therefore, the maximum

convergence speed is finite.

We now consider the effect of various types of shocks to our stationary equilibrium. In the

first row of Figure 1 we plot the effects of a positive shock to the fraction of informed trading,

meaning that ρ suddenly jumps to a higher value ρ′. This generates an increase in δ, which

jumps to its new value δ′ = g−1(ρ′), and it also generates a drop in the stationary public

volatility, which is now σ′∗ = σv/δ
′. Nevertheless, as there is no new information above the

fundamental value, the current public volatility σt remains equal to its old stationary value,

σ∗ = σv/δ. Proposition 4 shows that the public volatility starts decreasing monotonically

toward its stationary value σ′∗. Note that according to Corollary 4 the speed of convergence

to the new stationary equilibrium is S ′ = 1/(1−δ′2), which is higher than the old convergence

speed. We also describe the evolution of the bid-ask spread, which according to Proposition 3

satisfies st = 2δ′σt. Initially, the bid-ask spread jumps to reflect the jump to δ′. But then, as

σt converges to σ′∗ = σv/δ
′, the bid-ask spread starts decreasing to s∗ = 2σv, which does not

depend on ρ.

To summarize, after a positive shock to ρ, the public volatility starts decreasing mono-

tonically to its now lower stationary value, while the bid-ask spread initially jumps and then

decreases monotonically to the same stationary value (that does not depend on ρ). Intuitively,

a positive shock to the fraction of informed trading leads to a sudden increase in adverse se-

lection for the dealer, reflected in an initially larger bid-ask spread, after which the bid-ask
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Figure 1: Public Volatility and Bid-Ask Spread after Shocks.
This figure plots the effect of three types of shocks on the public volatility σt, and on the bid-ask

spread st (each shock occurs at t0 = 100). The initial parameters are: σv = 1, and ρ = 0.1 (hence

δ = 0.0795, σ∗ = 12.573, s∗ = 2). In the first row, the fraction of informed trading ρ jumps from

0.1 to 0.2 (hence σ∗ drops from 12.573 to 6.345). In the second row, the public volatility drops from

σ∗ = 12.573 to half of its value (6.286). In the third row, the fundamental volatility jumps from 1

to 2.
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spread reverts to its fundamental value, which is independent of informed trading. At the

same time, more informed trading leads to more precision for the dealer in the long run, which

is reflected in a smaller public volatility.
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In the second row of Figure 1 we plot the effects of a negative shock to the public volatility,

meaning that σt suddenly drops from the stationary value σ∗ to a lower value. This drop can

be caused for instance by public news about the value of the asset vt. Then, according to

Proposition 4, the public volatility increases monotonically back to the stationary value. The

bid-ask spread is always proportional to the public density: st = 2δσt, hence st also drops

initially and then increases monotonically toward the stationary value s∗. Intuitively, public

news has the effect of helping the dealer initially to get a more precise understanding about

the fundamental value. This brings down the bid-ask spread, as temporarily the dealer faces

less adverse selection. But this decrease is only temporary, as the value diffuses and the

same forces increase the public volatility and the bid-ask spread toward their corresponding

stationary values, which are the same as before.

In the third row of Figure 1 we plot the effects of a positive shock to the fundamental

volatility, meaning that σv suddenly jumps to a higher value σ′v. This implies that every value

increment vt+1 − vt now has higher volatility, but the uncertainty in vt, which is measured

by the public volatility σt, stays the same.11 Proposition 4 shows that the stationary public

volatility changes to σ′∗ = σ′v/δ, and the stationary bid-ask spread changes to s′∗ = 2σ′v.

Therefore, the public density increases monotonically from the initial stationary value to

the new stationary value, and the same is true for the bid-ask spread. Intuitively, a larger

fundamental volatility increases overall adverse selection for the dealer, and as a result both

the public density and the bid-ask spread eventually increase.

5 Equilibrium with Exact Bayesian Inference

In this section, we analyze in more detail the evolution of the public density φt when the dealer

is fully Bayesian. In particular, we are interested in computing the average shape of the public

density over all possible future paths of the game.12 Note that when computing the average

11One can mix this type of shock with a shock to the public volatility σt, which was already analyzed.
12As we see in Internet Appendix (Sections 1 and 2), one expects a well defined stationary density for the

continuous time Markov chain associated to our game. The only problem is that the fundamental value vt is
no longer stationary in our case, but follows a random walk. One can show that it is still possible to define a
stationary density as long as one does not require it to integrate to one over v. But we are interested in the
simpler problem of computing the marginal stationary density of vt − µt, which we solve numerically.
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shape of a density, we consider the average of the various densities after demeaning them. We

then show numerically that this average exists and is not too far from the stationary public

density described in Section 4.2, which is a normal density with mean zero and standard

deviation equal to σ∗ = σv/δ.

We thus demean the variables and densities involved in the previous formulas, and in

addition we normalize them by σ∗:

Ãt =
At − µt
σ∗

, B̃t =
Bt − µt
σ∗

, ṽt =
vt − µt
σ∗

, φ̃t(ṽ) = σ∗φt(µt + σ∗ṽ),

Φ̃t(ṽ) =

∫ ṽ

−∞
φ̃t(w)dw, ψ̃t(ṽ|Ot) = σ∗ψt(µt + σ∗ṽ|Ot).

(23)

With this new notation, the equations (4) and (5) from Proposition 1 imply the following

result.

Corollary 5. Consider a rapidly decaying public density φt with normalization φ̃t, and an

ask-bid pair (At, Bt) with normalization (Ãt, B̃t). After observing an order Ot ∈ {B, S}, the

normalized density at t+ 1 is φ̃t+1(w̃|Ot), where

φ̃t+1(w̃|B) =

∫ +∞

−∞
N
(w̃ − ṽ + Ãt

δ

) (
ρ1ṽ>Ãt + ρ

2
1ṽ∈[B̃t,Ãt]

+ 1−ρ
2

)
· φ̃t(ṽ)

ρ
2
(1− Φ̃t(Ãt)) + ρ

2
(1− Φ̃t(B̃t)) + 1−ρ

2

dṽ,

φ̃t+1(w̃|S) =

∫ +∞

−∞
N
(w̃ − ṽ + B̃t

δ

) (ρ1ṽ<B̃t + ρ
2
1ṽ∈[B̃t,Ãt]

+ 1−ρ
2

)
· φ̃t(ṽ)

ρ
2
Φ̃t(Ãt) + ρ

2
Φ̃t(B̃t) + 1−ρ

2

dṽ.

(24)

Figure 2 displays the normalized public density after t = 0, t = 1, and t = 5 buy orders

for various values of the informed share ρ. We notice by visual inspection that the normalized

public density is close to the standard normal density even after a sequence of 5 buy orders

(this sequence happens with probability 2−5, which is approximately 3.13%). The deviation of

the normalized public densities from the standard normal density is at its smallest level when

the fraction of informed trading ρ is either small or large, and it peaks for an intermediate

value ρ near 0.2. When ρ is small, the order flow is uninformative, hence the posterior is not

far from the prior. When ρ is large, the order flow is very informative, hence the posterior

depends strongly on the increment, which is normally distributed.
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Figure 2: Exact Normalized Public Density after Series of Buy Orders.
Each of the 6 plots represents the evolution of the normalized public density φ̃t after t = 0, t = 1

and t = 5 buy orders. The initial normalized public density in all cases (at t = 0) is the standard

normal density with mean zero and volatility one. The 6 plots correspond to the fraction of informed

trading ρ ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9}.

It turns out, however, that the stationary shape of the public density is not precisely

normal, but it has “fat tails,” that is, its fourth centralized moment (kurtosis) is larger than

3. Table 1 displays, for each ρ ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9}, several moments of the average

normalized density computed after 200 different random paths. As the starting density (at

t = 0) is standard normal for all the different ρ, we need to make sure that we choose a path

length long enough for the average density to stabilize. Numerically, we see that it is enough
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Table 1: Average Normalized Public Density after Series of Random Orders.
For each informed share ρ ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9}, consider 200 random series of 20 orders

chosen among buy or sell with equal probability, and denote by φ̃S the normalized public den-

sity computed after observing the series S = 1, 2, . . . , 200. The table displays four estimated mo-

ments of the average ψ = φ̃1+φ̃2+···+φ̃200
200 : the mean µ =

∫ +∞
−∞ xψ(x)dx, the standard deviation

σ =
(∫ +∞
−∞ (x−µ)2ψ(x)dx

)1/2
, the skewness

∫ +∞
−∞

(x−µ
σ

)3
ψ(x)dx, and the kurtosis

∫ +∞
−∞

(x−µ
σ

)4
ψ(x)dx.

It also displays the average bid-ask spread normalized by s∗ = 2σv (N.Spread).

ρ 0.01 0.1 0.3 0.5 0.7 0.9

Mean -0.000 0.000 -0.001 -0.001 -0.010 -0.002

St.Dev. 1.000 1.002 1.039 1.056 1.041 1.009

Skewness -0.001 0.018 0.016 -0.003 -0.012 -0.009

Kurtosis 3.005 3.419 4.587 4.597 4.089 3.343

N.Spread 1.003 0.966 0.959 0.988 1.014 1.004

to choose t = 20.13 Thus, in Table 1 we display the first four centralized moments for the

average normalized public density at t = 20, computed over 200 random paths.

The first three moments of the average density at t = 20 are similar to the moments of the

standard normal density: the mean and the skewness (centralized third moment) are close

to zero, and the standard deviation is close to one. The kurtosis, however, is larger than 3,

indicating that the stationary public density has indeed fat tails. Nevertheless, the deviation

from the standard normal density is not large, especially when ρ is small or large. Moreover,

the last row in Table 1 implies that the average bid-ask spread in each case is quite close to

s∗ = 2σv, which is the stationary value in the approximate Bayesian case: see equation (19).

Thus, we argue that the normal approximation made in Section 4 is reasonable, especially

when it comes to our main liquidity measure, the bid-ask spread.

The question remains how different the normalized public density can be from the average

density. This question is already discussed tangentially in Figure 2, where we observe the

normalized public density after five buy orders. But to understand this issue in more detail,

13We have checked that the average density at t = 20 is in absolute value less than 0.01 apart from the
average density at t = 25 or t = 30.
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Figure 3: Normalized Public Density after Series of Random Orders.
For an informed share ρ = 0.1, consider 200 random series of 20 orders chosen among buy or sell with

equal probability, and denote by φ̃S the normalized public density computed after observing the series

S = 1, 2, . . . , 200. The table displays the densities φ̃S , as well as their average ψ = φ̃1+φ̃2+···+φ̃200
200 .

The average density is displayed with a thick dashed line.

we choose one particular value of the informed share, ρ = 0.1, for which the normalized public

density after five buy orders appears more different than the normal density. Figure 3 displays

the normalized public density after each of the 200 random series of 20 orders, along with the

average density. Then, the results in Table 1 and Figure 3 can be summarized by observing

that the normalized public density does not deviate too far from its average value, and in

turn this average value does not deviate too far from the standard normal density.

6 Robustness and Extensions

6.1 Discussion

In this section we discuss whether our main result (that liquidity is not affected by the fraction

ρ of informed trading) remains true if we modify the model assumptions. For that, we recall

the intuition behind that result, as described in Section 4.2. Consider the case when ρ is low,
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and suppose the dealer observes a buy order at t. First, we have the adverse selection effect:

a low ρ means that the buyer is unlikely to be informed, which implies that the update of

public mean (and hence the dealer’s bid-ask spread) should be small. Second, there is an

opposing dynamic efficiency effect: in the rare case when the buyer is actually informed, he

must have observed a large fundamental value vt, as the uncertainty in vt (measured by the

public volatility σ∗) is also large.

Note that for this offsetting argument to fully work, the public volatility σ∗ must be very

large when ρ is very small. This is possible only if the range of the fundamental value is

not restricted to become very large. Such restrictions can occur in two ways: either (i) the

fundamental value is directly assumed to be bounded, or (i) the signals received by the dealer

essentially bound the dealer’s uncertainty.

Situation (i) occurs if we require the fundamental value to lie in a bounded interval such as

[0, 1].14 We analyze such a model in the Internet Appendix Section 2, where the fundamental

value is either zero or one (as in Glosten and Milgrom, 1985), and it switches every period

between these two values with probability ν < 1/2. In that case, the dynamic efficiency

effect no longer offsets the adverse selection effect. Nevertheless, even if ρ is small, as long

as ρ is large relative to the switching parameter ν, the dynamic efficiency effect is relatively

strong, and as a result the dependence of the average bid-ask spread on ρ is weaker, and the

equilibrium approaches the one in the diffusing-value model where the average bid-ask spread

is independent of ρ.

Situation (ii) occurs if the dealer receives at every t signals about the level vt. Note that

this is not by itself enough to bound dealer’s uncertainty about vt. Indeed, in Section 6.2

we consider an extension of our model in which, in addition to observing the order flow, the

dealer receives at every t signals about the increment vt − vt−1. In that case, we see that

the main result goes through. The reason is that the dealer’s uncertainty about the level vt

becomes large when ρ is small: the dealer only learns about vt once, after which she learns

only about future value increments. If, by contrast, the dealer received at every t signals

about the level vt, then the uncertainty would remain bounded even when ρ is very small,

14This setup of course cannot occur if the fundamental value follows a random walk.
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and the main result would no longer hold.

6.2 Public News

We now analyze an extension of the model in Section 2, in which the dealer receives news

every period (this could be interepreted as the dealer receiving public news). Specifically,

suppose that before each t = 1, 2, . . . the dealer receives a signal ∆st = st − st−1 about the

increment ∆vt = vt − vt−1:15

∆st = ∆vt + ∆ηt, with ∆ηt = ηt − ηt−1
IID∼ N

(
·, 0, ση

)
. (25)

Denote, respectively, by µt and σt the public mean and public volatility just before trading

at t = 0, 1, 2, . . . (but after the signal ∆st is observed). Note that this extension generalizes

the model in Section 2: when ση approaches infinity, it is as if the dealer receives no signal at

t. The next result generalizes Proposition 4.

Proposition 5. For any t = 0, 1, 2, . . . the public mean and volatility satisfy

µt+1 = µt ± δσt +
σ2
v

σ2
v + σ2

η

∆st+1, σ2
t = σ2

∗ +
(
σ2

0 − σ2
∗
)

(1− δ2)t, (26)

where δ = g−1(2ρ), as in equation (15), and

σ∗ =
σvη
δ

with σvη =
σvση√
σ2
v + σ2

η

. (27)

For any initial value σ0 and any sequence of orders, the public volatility σt monotonically

converges to σ∗, and the bid-ask spread monotonically converges to

s∗ = 2σvη. (28)

15Alternatively, but perhaps less realistically, the dealer receives in each period t a signal about the level
vt. In this case, there is an upper bound for the dealer’s uncertainty even if the informed share is very small.
Hence, the public volatility is no longer increasing indefinitely with the informed share, and therefore the
dynamic efficiency effect is reduced. As a result, the adverse selection effect dominates the dynamic efficiency
effect, and the stationary bid-ask spread is increasing in the informed share.
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Proposition 5 is essentially the same result as Proposition 4, except that the fundamental

volatility σv is replaced here by σvη. The parameter σvη represents the increase in dealer

uncertainty from t to t+ 1, conditional on her receiving the signal ∆st+1.16 When ση is zero,

the dealer learns perfectly the increment ∆v, hence even if the dealer does not know the initial

value v0, she ends up by learning vt almost perfectly (she also learns about vt from the order

flow). When ση approaches infinity, the dealer receives uninformative signals, σvη approaches

σv, and the equilibrium behavior is described as in Proposition 4.

The stationary bid-ask spread s∗ is twice the parameter σvη. Thus, the bid-ask spread

is increasing in the news uncertainty parameter ση, and ranges from zero (when ση = 0) to

2σv (when ση =∞). The relation between the bid-ask spread and ση is intuitive: with more

imprecise news, the dealer is more uncertain about the asset value, and sets a larger stationary

bid-ask spread.

Note that even in this more general context the stationary bid-ask spread s∗ does not

depend on the informed share ρ. The intuition is the same as for Proposition 4, and is

discussed at the end of the proof of Proposition 5. This intuition is based on the general

result (proved in Appendix B) that for any filtration problem in which the variance remains

constant over time, the variance of the change in public mean must equal the fundamental

variance. But the latter variance is independent of ρ, as is the variance of the signal ∆s,

hence the bid-ask spread is also independent of ρ.

7 Conclusion

In this paper we have presented a dealer model in which the asset value follows a random

walk. The stationary equilibrium of the model has novel properties. Our main finding is

that the stationary bid-ask spread no longer depends on the informed share (the fraction of

traders that are informed). This result is driven by two offsetting effects: (i) the traditional

adverse selection effect: the dealer sets higher bid-ask spreads to protect from a larger number

of informed traders, and (ii) the dynamic efficiency effect: the dealer learns faster from the

order flow when there are more informed traders, and this reduces the bid-ask spread.

16Indeed, its square σ2
vη is equal to the conditional variance Var

(
∆vt+1|∆st+1

)
.
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The non-stationary equilibria converge to the stationary equilibrium, regardless of the

initial state. The evolution of the non-stationary equilibrium after various types of shocks

provides additional testable implications of our model. For instance, after a positive shock to

the informed share (e.g., if more informed investors start trading in that stock) the bid-ask

spread jumps but then it decreases again to its stationary level. This type of liquidity resilience

occurs purely for informational reasons, without any additional market maker jumping in to

provide liquidity.

Appendix A. Proofs of Results

Proof of Proposition 1. Using Bayes’ rule, the posterior density of vt after observing O is

ψt(v|O) =
P(Ot = O | vt = v) · P(vt = v)∫
v
P(Ot = O | vt = v) · P(vt = v)

=
gt(O, v) · φt(v)∫
v
gt(O, v) · φt(v)

, (A1)

where
∫
v
F (v) is shorthand for

∫ +∞
−∞ F (v)dv. Substituting gt(O, v) from (2) and (3) in the

above equation, we obtain (4).

Let f(w, v) = P(vt+1 = w|vt = v) = N (w − v, 0, σv) be the transition density of vt. To

compute the posterior density of vt after observing Ot = O, note that

φt+1(w|O) =

∫
v

P(vt+1 = w | vt = v,Ot = O) · P(vt = v | Ot = O)

=

∫
v

P(vt+1 = w | vt = v) · P(vt = v | Ot = O) =

∫
v

f(w, v) · ψt(v|O),

(A2)

which proves (5).

To simplify notation, we omit conditioning on the order Ot. From (4), it follows that

the posterior density ψt is equal to φt multiplied by a piecewise constant function. The

prior density φt is rapidly decaying, hence it is bounded. Therefore ψt is also bounded and

continuous, although it is no longer smooth. Nevertheless, when we convolute ψt(·) with

N (·, 0, σv) the result φt+1 becomes smooth. Indeed, the N ’th derivative dNφt+1(w)/dwN

involves differentiating the smooth function N (w − v, 0, σv) under the integral sign. As the
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remaining term ψt(v) is bounded, the integrals are well defined, and hence φt+1 is a smooth

function. The fact that φt+1 is also rapidly decaying can be seen in the same way, using again

the fact that ψt is bounded.

Proof of Corollary 1. By definition of the ask-bid pair, At is the mean of the posterior

density of vt after observing a buy order at t. But the increment vt+1− vt has zero mean and

is independent of the previous variables until t. Therefore, At is also the mean of the posterior

density of vt+1 after observing a buy order at t. Similarly, Bt is the mean of the posterior

density of vt+1 after observing a sell order at t. This proves the equations in (7).

Proof of Proposition 2. Define the following function:17

Ht(v) =

∫ v

−∞
wφt(w)dw = vΦt(v)−

∫ v

−∞
Φt(w)dw. (A3)

Note that Ht(−∞) = 0 and Ht(+∞) =
∫∞
−∞wφt(w)dw = µt. Also, note that

Θt(v) = µtΦt(v)−Ht(v). (A4)

To prove the desired equivalence, start with an ask-bid pair (At, Bt). This pair must satisfy

the dealer’s pricing conditions: At is the mean of ψt(·|B), and Bt is the mean of ψt(·|S). Using

the formulas in (4) for ψt(v|O), we compute

At =
ρ
(
µt −Ht(At)

)
+ ρ

2

(
Ht(At)−Ht(Bt)

)
+ 1−ρ

2
µt

ρ
2
(1− Φt(At)) + ρ

2
(1− Φt(Bt)) + 1−ρ

2

,

Bt =
ρHt(Bt) + ρ

2

(
Ht(At)−Ht(Bt)

)
+ 1−ρ

2
µt

ρ
2
Φt(At) + ρ

2
Φt(Bt) + 1−ρ

2

.

(A5)

17In the formula for Ht we use integration by parts, and also the fact that limv→−∞ vΦt(v) = 0. To prove
this last fact, suppose v = −x with x > 0. Since φt is rapidly decaying, φt(−x) < Cx−3 for some constant C.

Then xΦt(−x) = x
∫ −x
−∞ φt(w)dw < xCx

−2

2 , which implies limx→∞ xΦt(−x) = 0.
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Using (A4), we compute the following differences:

At − µt =
ρ
2
Θt(At) + ρ

2
Θt(Bt)

ρ(1− Φt(At)) + ρ
2
(Φt(At)− Φt(Bt)) + 1−ρ

2

,

µt −Bt =
ρ
2
Θt(At) + ρ

2
Θt(Bt)

ρΦt(Bt) + ρ
2
(Φt(At)− Φt(Bt)) + 1−ρ

2

.

(A6)

As Θt is strictly positive everywhere (see Footnote 9), we have the following inequalities:

At > µt > Bt, or equivalently At ∈ (µt,+∞) and Bt ∈ (−∞, µt). The equations (A6) can be

written as

F (At, Bt) = 0, G(At, Bt) = 0, (A7)

where the functions F and G are defined in (8). Conversely, suppose we have a solution

(At, Bt) of (A7), with At > µt > Bt. Then, this pair satisfies the equations in (A6), which

are the dealer’s pricing conditions. Thus, (At, Bt) is an ask-bid pair.

We now show that a solution of (A7) exists. The partial derivatives of F and G are

∂F

∂A
= −Θt(A) + Θt(B)

(A− µt)2
,

∂F

∂B
=

A−B
A− µt

φt(B),

∂G

∂A
= −A−B

µt −B
φt(A),

∂G

∂B
=

Θt(A) + Θt(B)

(µt −B)2
.

(A8)

From (8) we see that F (A,B) has well defined limits at B = ±∞, which follows from the

formulas: Θt(±∞) = 0, Φt(−∞) = 0, and Φt(+∞) = 1. Thus we extend the definition of

F for all B ∈ R̄ = [−∞,+∞]. Now fix B ∈ R̄. We show that there is a unique solution

A = α(B) of the equation F (A,B) = 0. From (A8) we see that ∂F
∂A

< 0 for all A ∈ (µt,∞).

From (8) we see that when A ↘ µt, F (A,B) ↗ ∞; while when A ↗ ∞, F (A,B) ↘

−1+ρ
ρ

+ 1 + Φt(B) = −1
ρ

+ Φt(B) < 0 (recall that ρ ∈ (0, 1)). Thus, for any B there is

a unique solution of F (A,B) = 0 for A ∈ (µt,∞). Denote this unique solution by α(B).

Differentiating the equation F
(
α(B), B

)
= 0 implies that for all B the derivative of α(B) is

α′(B) = −∂F
∂B

(α(B), B)/∂F
∂A

(α(B), B) > 0. Define A = α(−∞) and A = α(µt). The results

above imply that both A and A belong to (µt,∞), and α is a bijective function between

[−∞, µt] and [A,A].

A similar analysis shows that for all A ∈ R̄, there is a unique solution B = β(A) of the
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equation G(A,B) = 0. Moreover, the function β is increasing, and if we define B = β(µt) and

B = β(∞), it follows that both B and B belong to (−∞, µt), and the function α is bijective

between [µt,∞] and [B,B].

Next, define the function f : R̄→ R̄ by

f(A) = α
(
β(A)

)
. (A9)

Consider the set

S = {(A,B) | A− f(A) = 0 , B = β(A)}. (A10)

It is straightforward to show that S coincides with the set of all ask-bid pairs. Indeed,

(A,B) ∈ S is equivalent to A = α(B) and B = β(A), which, from the discussion above, is

equivalent to F (A,B) = 0 and G(A,B) = 0. Therefore, the existence of an ask-bid pair is

equivalent to there being at least one solution of A− f(A) = 0.

We now show that the equation A−f(A) = 0 has at least one solution. The function f(A)

is increasing and bijective between [µt,∞] and [α(B), α(B)]. As B,B ∈ (−∞, µt), it follows

that [α(B), α(B)] ⊂ (A,A) ⊂ (µt,∞). When A ↘ µt, A − f(A) → µt − α(B) < 0, while

when A↗∞, A− f(A)→∞− α(B) > 0. Thus, there exists a solution of A− f(A) = 0 on

(µt,∞).

Finally, define

At = inf
{
A ∈ (µt,∞)

∣∣ A− f(A) = 0
}
, Bt = β(At). (A11)

As f is continuous, At also satisfies At − f(At) = 0, hence among all possible ask-bid pairs

the ask closest to µt is attained at At.

Proof of Proposition 3. Denote by φ(·) = N (·, 0, 1) the standard normal density, and by

Φ(·) its cumulative density. Recall that φt(·) is the density of vt just before trading at t, and

ψt(·|Ot) is the density of vt after trading at t. In this proposition, we assume that we start

with a normal density

φt(v) =
1

σt
φ

(
v − µt
σt

)
, (A12)
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with mean µt and volatility σt. Define the normalized ask and bid, respectively, by

at =
At − µt
σt

, bt =
Bt − µt
σt

. (A13)

We now compute the mean and volatility of φt+1(·|Ot). As the increment vt+1−vt ∼ N (0, σ2
v)

is independent of past variables, the mean and volatility of φt+1(·|Ot) satisfy

µt+1,Ot =

∫
v

v ψt(v|Ot), σ2
t+1,Ot = σ2

v +

∫
v

(
v − µt+1,Ot

)2
ψt(v|Ot). (A14)

From (4), we have ψt(v|B) =
ρ1v>At+

ρ
2
1v∈[Bt,At]

+
1−ρ

2
ρ
2

(1−Φt(At))+
ρ
2

(1−Φt(Bt))+
1−ρ

2

φt(v). With the change of variables

z = v−µt
σt

, we compute posterior mean conditional on a buy order:

µt+1,B = µt +

∫ +∞

−∞
(v − µt)

ρ1v>At + ρ
2
1v∈[Bt,At] + 1−ρ

2
ρ
2
(1− Φt(At)) + ρ

2
(1− Φt(Bt)) + 1−ρ

2

1

σt
φ
(
v−µt
σt

)
dv

= µt + σt

∫ +∞

−∞
z

ρ1z>at + ρ
2
1z∈[bt,at] + 1−ρ

2
ρ
2
(1− Φ(at)) + ρ

2
(1− Φ(bt)) + 1−ρ

2

φ(z) dz

= µt + σt
φ(−at) + φ(−bt)

Φ(−at) + Φ(−bt) + 1−ρ
ρ

.

(A15)

Similarly, the posterior mean conditional on a sell order is

µt+1,S = µt − σt
φ(at) + φ(bt)

Φ(at) + Φ(bt) + 1−ρ
ρ

, (A16)

To compute σ2
t+1,Ot , we notice that

∫
v

(
v − µt

)2
ψt(v|Ot) =

∫
v

(
v − µt+1,Ot

)2
ψt(v|Ot) +

(
µt+1,Ot − µt

)2
, (A17)

where we use the fact that
∫
v

(
v − µt+1,Ot

)
ψt(v|Ot) = 0. Using (A14) and (A17), a similar

29



calculation as in (A15) implies that the posterior variance conditional on a buy order satisfies

σ2
t+1,B − σ2

v +
(
µt+1,B − µt

)2
=

∫
v

(
v − µt

)2
ψt(v|B)

= σ2
t

∫ +∞

−∞
z2 ρ1z>at + ρ

2
1z∈[bt,at] + 1−ρ

2
ρ
2
(1− Φ(at)) + ρ

2
(1− Φ(bt)) + 1−ρ

2

φ(z) dz

= σ2
t

(
1 +

atφ(at) + btφ(bt)

Φ(−at) + Φ(−bt) + 1−ρ
ρ

)
.

(A18)

Similarly, the posterior variance conditional on a sell order satisfies

σ2
t+1,S − σ2

v +
(
µt+1,S − µt

)2
= σ2

t

(
1 − atφ(at) + btφ(bt)

Φ(at) + Φ(bt) + 1−ρ
ρ

)
. (A19)

We now use the fact that at and bt are the normalized ask and bid. Equation (7) implies

that the ask is At = µt+1,B and the bid is Bt = µt+1,S. If we normalize these equations, we

have at =
µt+1,B−µt

σt
and bt =

µt+1,S−µt
σt

. Using (A15) and (A16), we obtain

at =
φ(−at) + φ(−bt)

Φ(−at) + Φ(−bt) + 1−ρ
ρ

, bt = − φ(at) + φ(bt)

Φ(at) + Φ(bt) + 1−ρ
ρ

, (A20)

We show that this system has a unique solution. We use the notation from the proof of

Proposition 2, adapted to this particular case. For (a, b) ∈ (0,∞)× (−∞, 0), define F (a, b) =

φ(a)+φ(b)
a

− Φ(−a) − Φ(−b) − 1−ρ
ρ

and G(a, b) = φ(a)+φ(b)
−b − Φ(a) − Φ(b) − 1−ρ

ρ
. As in the

proof of Proposition 2, for b ∈ [−∞, 0] define α(b) as the unique solution of F (α(b), b) = 0;

and for a ∈ [0,∞] define β(a) as the unique solution of G(a, β(a)) = 0. For a ∈ (0,∞),

define f(a) = α(β(a)). We show that any solution a of the equation a − f(a) = 0 must

satisfy a < 1. Let b = β(a). Since a = α(b), by definition F (a, b) = 0. As in the proof of

Proposition 2, one shows that F is decreasing in a, and that F (0, b) = +∞ > 0. As b < 0,

F (1, b) = φ(1)−Φ(−1)+φ(b)−Φ(−b)− 1−ρ
ρ
< φ(1)−Φ(−1)+φ(0)−Φ(0) ≈ −0.0177 < 0. As

F (a, b) = 0 and F is decreasing in a (and a is positive), we have just proved that a ∈ (0, 1).

A similar argument (adapted to the function G) shows that b = β(a) ∈ (−1, 0).

As in equation (A9), define f(a) = α
(
β(a)

)
. We need to show that the equation a−f(a) =

0 has a unique solution in (0,∞). By contradiction, suppose there are at least two solutions
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a1 < a2, and suppose a1 is the smallest such solution and a2 the largest. As f is continuous

and takes values in some compact interval [b, b] (see the proof of Proposition 2), a1 and a2 are

well defined. Also, since f is increasing, f is a bijection of [a1, a2]. The argument above then

shows that both a1 and a2 are in (0, 1). If we prove that f ′ < 1 on [a1, a2], it follows that

a − f(a) is increasing on [a1, a2] and cannot therefore be equal to zero at both ends. This

contradiction therefore proves uniqueness, as long as we show that indeed f ′ < 1 on (0, 1).

Let a ∈ (0, 1) and denote b = β(a) and a′ = α(b). Then by the chain rule f ′(a) = α′(b)β′(a).

Differentiating the equations F (α(b), b) = 0 and G(a, β(a) = 0, we have α′(b) = φ(b)(a′−b)a′
φ(a′)+φ(b)

and

β′(b) = φ(a)(a−b)(−b)
φ(a)+φ(b)

. Both these derivatives are of the form φ(x1)(x1+x2)x1
φ(x1)+φ(x2)

with x1, x2 ∈ (0, 1).

This function is increasing in x2, hence it is smaller than φ(x1)(x1+1)x1
φ(x1)+φ(1)

, which is increasing in

x1, hence smaller than one, which is the value corresponding to x1 = 1. Thus, f ′ < 1 on (0, 1)

and the uniqueness is proved.

To find the unique solution, note that by symmetry we expect at = −bt. If we impose

this condition, we have Φ(at) + Φ(bt) = Φ(−at) + Φ(−bt) = 1. Therefore, we need to solve

the equation at = 2ρφ(at) for at > 0, or equivalently g(at) = 2ρ, where g(x) = x
φ(x)

. As the

derivative of φ is φ′(x) = −xφ(x), the derivative of g is g′(x) = 1+x2

φ(x)
> 0 for all x. Moreover,

g(0) = 0 and limx→∞ g(x) =∞, hence g is increasing and a one-to-one and mapping of (0,∞).

Thus, if we define δ = g−1(2ρ), which is the same formula as in (15), we have g(δ) = 2ρ. The

solution of (A20) is then

at = −bt = δ, or At = µt + δσt, Bt = µt − δσt. (A21)

Thus, the posterior mean satisfies

µt+1,B = µt + δσt, µt+1,S = µt − δσt, (A22)

which proves the first part of equation (14).

Equation (A22) also implies that (µt+1,Ot − µt)
2 = δ2σ2

t for Ot ∈ {B, S}. As at = −bt,

equations (A18) and (A19) imply that σ2
t+1,Ot − σ

2
v + δ2σ2

t = σ2
t . Thus, the posterior variance
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satisfies

σ2
t+1,B = σ2

t+1,S = (1− δ2)σ2
t + σ2

v , (A23)

which proves the second part of equation (14).

Proof of Proposition 4. Recall that the function g : [0,∞)→ [0,∞) is increasing and δ =

g−1(2ρ), with ρ ∈ (0, 1). Hence, δ < g−1(2) ≈ 0.647, and in particular δ < 1. Equation (A23)

implies that the public variance evolves according to σ2
t = (1− δ2)σ2

t−1 + σ2
v for any t ≥ 0 (by

convention, σ−1 = 0). Iterating this equation, we obtain σ2
t = (1− δ2)tσ2

0 + 1−(1−δ2)t

δ2
σ2
v . Using

σ∗ = σv
δ

, we obtain σ2
t = σ2

∗ + (1− δ2)t(σ2
0 − σ2

∗), which proves (17). As δ ∈ (0, 1), it is clear

that σ2
t converges monotonically to σ2

∗ for any initial value σ0. The bid-ask spread satisfies

st = 2σtδ, hence it converges to 2σ∗δ = 2σv
δ
δ = 2σv = s∗.

Proof of Corollary 2. Following the proof of Proposition 4, recall that g is increasing on

(0,∞). Its inverse g−1 is therefore also increasing, and σ∗ = σv/g
−1(2ρ) is decreasing in ρ.

The dependence on σv is straightforward.

Proof of Corollary 3. Conditional on the information at t, each order (buy or sell) is

equally likely. Therefore, the change in the public mean µt+1,Ot −µt has a binary distribution

with probability 1/2, which has standard deviation equal to σv, which is the fundamental

volatility.

Proof of Corollary 4. Equation (A23) shows that the public variance σ2
t evolves according

to σ2
t+1 = (1 − δ2)σ2

t + σ2
v . Taking the limit on both sides, we get σ2

∗ = (1 − δ2)σ2
∗ + σ2

v .

Subtracting the two equations above, we get σ2
t+1 − σ2

∗ = (1− δ2)(σ2
t − σ2

∗), which proves the

speed of convergence formula (22) for the public variance. As σ2
t −σ2

∗ = (σt−σ∗)(σt+σ∗), the

formula (22) is true for the public volatility as well. Finally, the bid-ask spread is st = 2δσt,

which proves (22) for the bid-ask spread.

Proof of Corollary 5. This follows directly from equations (4) and (5) from Proposition 1,

making the change of variables from equation (23).

Proof of Proposition 5. The only difference from the setup of Section 2 is that after trad-

ing at t (but before trading at t+ 1) the dealer receives a signal ∆st+1 = ∆vt+1 + ∆ηt+1. By
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notation, just before trading at t, vt is distributed as N (·, µt, σt). We thus follow the proof of

Propositions 3 and 4, and infer that after trading at t the dealer regards vt to be distributed as

N (·, µ′t, σ′t), where µ′t = µt±δσt and σ′2t = (1−δ2)σ2
t .

18 After observing ∆st+1 = ∆vt+1+∆ηt+1,

the dealer computes E
(
∆vt+1|∆st+1

)
= σ2

v

σ2
v+σ2

η
∆st+1 and Var

(
∆vt+1|∆st+1

)
=

σ2
vσ

2
η

σ2
v+σ2

η
= σ2

vη.

Hence, after observing the signal, the dealer regards vt+1 to be distributed as N (·, µt+1, σt+1),

with

µt+1 = µ′t +
σ2
v

σ2
v + σ2

η

∆st+1, σ2
t+1 = σ′2t + σ2

vη = (1− δ2)σt + σ2
vη. (A24)

The recursive equation for σt is the same as (A23), except that instead of σv we now have

σvη. Then, the same proof as in Propositions 3 and 4 can be used to derive all the desired

results.

Note that equation (26) implies that the change in public mean is ∆µt+1 = ±δσt +

σ2
v

σ2
v+σ2

η
∆st+1. Thus, in the stationary equilibrium, Var(∆µt+1) = δ2σ2

∗ + σ4
v

(σ2
v+σ2

η)2
(σ2

v + σ2
η) =

σ2
vη + σ4

v

σ2
v+σ2

η
= σ2

v = Var(∆vt+1). This verifies the result in Appendix B that in any stationary

filtration problem the variance of the change in public mean must equal the fundamental

variance. Moreover, the half spread is equal to δσ∗ = σvη, which does not depend on the

informed share ρ.

Appendix B. Stationary Filtering

We show that in a filtration problem that is stationary (in a sense to be defined below) the

variance of value changes is the same as the variance of the public mean changes. Let vt be

a discrete time random walk process with constant volatility σv. Suppose each period the

market gets (public) information about vt. Let It be the public information set available at

time t. Denote by µt = E(vt|It) = Et(vt) the public mean at time t, i.e., the expected asset

value given all public information. This filtration problem is called stationary if the public

18The sign ± is plus if a buy order is submitted at t, and minus if a sell order is submitted at t.
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variance is constant over time:

Vart(vt) = Vart+1(vt+1). (B1)

The next result gives a necessary and sufficient for the filtration problem to be stationary.

Proposition 6. The filtration problem is stationary if and only if

Var(vt+1 − vt) = Var(µt+1 − µt).

Proof. Since µt = Et(vt), we have the decomposition vt = µt + ηt, where ηt is orthogonal

on the information set It. Moreover, Var(ηt) = Vart(vt). Similarly, vt+1 = µt+1 + ηt+1, and

Var(ηt+1) = Vart+1(vt+1). Thus, the stationary condition reads Var(vt+1−µt+1) = Var(vt−µt).

We can decompose vt+1 − µt in two ways:

vt+1 − µt = (vt+1 − µt+1) + (µt+1 − µt)

= (vt+1 − vt) + (vt − µt).
(B2)

We verify that these are orthogonal decompositions. The first condition is that cov(vt+1 −

µt+1, µt+1 − µt) = 0, i.e., that cov(ηt+1, µt+1 − µt) = 0. But ηt+1 is orthogonal on It+1,

which contains µt+1 and µt. The second condition is that cov(vt+1 − vt, vt − µt) = 0. But vt

has independent increments, so vt+1 − vt is independent of vt and anything contained in the

information set at time t. (This is true as long as the market does not get at t information

about the asset value at a future time.)

The total variance of the two orthogonal decompositions in (B2) must be the same, hence

Var(vt+1 − µt+1) + Var(µt+1 − µt) = Var(vt+1 − vt) + Var(vt − µt). But being stationary is

equivalent to Var(vt+1 − µt+1) = Var(vt − µt), which is then equivalent to Var(vt+1 − vt) =

Var(µt+1 − µt).
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their relevant remarks on our work. We would also like to thank the participants at 7th Workshop on Financial
Determinants of FX Rates Norges Bank, at the 2018 SoFiE conference, at the 2018 DEDA conference and at seminars
at City Hong Kong University, at LUISS and at University of the Balearic Islands for useful comments.

†University of St. Gallen, Switzerland. angelo.ranaldo@unisg.ch
‡LUISS ”Guido Carli” University, Department of Economics and Finance, Viale Romania 32, 00197 Roma,

Italy; CREATES, Department of Economics and Business Economics, Aarhus University, Denmark. sdemag-
istris@luiss.it

1



1 Introduction

Since the demise of the post-war Bre�on Woods system in the 1970s, the international �nancial

system has witnessed a growing capital mobility and wider movements of foreign exchange

(FX) rates. In such a regime of �oating FX rates and open economies, anyone dealing with a

currency other than that of the base currency is concerned with the (adverse) evolution of FX

rates, their volatility, and market dynamics such as trading volume and illiquidity. It is thus a

natural question how FX rates, volatility, and trading volume interrelate.

In this paper, we provide a simple theoretical framework to jointly explain FX rates, trad-

ing volume, and volatility in a multi-currency environment. Tied together by triangular no-

arbitrage conditions, FX rate movements are determined by common information and di�erences

in traders’ reservation prices, or disagreement, that induce trading. In such a uni�ed se�ing,

our model outlines two main drivers within and across currencies: First, investors’ disagree-

ment is the common determinant of trading volume and volatility of each FX rate. Second, the

no-arbitrage condition is the “glue” across currencies creating commonality in trading volume,

volatility, and illiquidity. Our model also provides an intuitive closed-form solution for mea-

suring illiquidity in terms of price impact (Amihud, 2002). Using new and unique intraday data

representative for the global FX spot market, the empirical analysis validates our main theoretical

predictions, that is, (i) more disagreement increases FX trading volume, volatility, and illiquid-

ity, (ii) stronger commonalities pertain to more e�cient (arbitrage-free) currencies, and (iii) our

illiquidity proxy is e�ective in measuring FX illiquidity.

�e joint analysis of FX volume and volatility is important for at least three reasons. First, the

FX market is the world largest �nancial market with USD 5.1 trillion of daily traded volume (Bank

of International Se�lements, 2016). Despite its importance and apparent enormous liquidity, an

in-depth understanding of FX volume is still missing. �is can be explained by at least two

reasons. On the one hand, FX rates are commonly traded over-the-counter, which is notoriously

opaque and fragmented.1 On the other hand, there has been a paucity of comprehensive volume

data at a global scale. Second, FX rates are key for pricing many assets including international

1�e microstructure of the FX market is explained in detail in e.g. Lyons (2001) and King et al. (2012). �e recent
developments of the FX markets are discussed in Rime and Schrimpf (2013) and Moore et al. (2016).
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stocks, bonds, and derivatives, and for assessing their risk. �ey are also relevant for policy

making such as conducting (unconventional) monetary policy and FX interventions. A be�er

understanding of whether and how FX volume, volatility and illiquidity determine FX rates can

improve all these tasks. �ird, distressed markets such as currency crises are characterized by

sudden FX rates movements, drops in liquidity, and raises in volatility. It could thus be supportive

of �nancial stability to highlight the sources of volatility and illiquidity, how they reinforce each

other, and across currencies.

Our analysis proceeds in two steps: theory and empirics. Our theory builds upon an equi-

librium model in which the evolution of the FX rate is driven by the arrival of new information

and by the trading activity. �e trading volume is induced by the deviation of individual agent’s

reservation prices from the observed market price. �e continuous-time feature of the model

allows us to obtain consistent measurements of the underlying unobservable quantities, such as

volatility and illiquidity, and to relate them to the trading volume. Furthermore, agents trade

in a multi-currency environment in which direct FX rates are tied to cross rates by triangular

no-arbitrage conditions. �is implies that direct and arbitrage-related (or synthetic) rates must

equate in equilibrium, while the trading volume re�ects the dependence on the aggregated infor-

mation �ows across FX rates. �us, trading volume is the driving force processing information

and reservation prices in currency values and a�racting FX rates to arbitrage-free prices.

�ree basic propositions arise from our theoretical framework: First, trading volume and

volatility are driven by traders’ disagreement. Second, the combination of volatility and volume

provides a closed-form intuitive expression for measuring illiquidity in terms of price impact

such as the widespread proxy proposed in Amihud (2002). �ird, trading volume, volatility and

liquidity across FX rates are linked by no-arbitrage conditions, which lead to the commonalities

across FX rates. Since arbitrage passes through the trading activity (volume), more liquid cur-

rencies should reveal stronger commonalities and price e�ciency (in terms of smaller deviations

from triangular arbitrage condition).

Set against this background, we test the main empirical predictions derived from our theory.

To do this, we utilize two data sets. First, trading volume data come from CLS Bank Interna-

tional (CLS), which operates the largest payment-versus-payment (PVP) se�lement service in

the world. Hasbrouck and Levich (2017) provide a very comprehensive description of the CLS
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institutional se�ing and Gargano et al. (2019) show that CLS data cover around 50% of the FX

global turnover compared to the BIS triennial surveys. Trading volume is measured at the hourly

level, across 29 currency pairs over a 5-year period from November 2011 to November 2016.2 For

the same FX panel, we obtain intraday spot rates from Olsen data. For each FX rate and each

minute of our sample, we observe the following quotes: ask, bid, low, high, close, and midquote.

By merging these two data sets, we can analyze the hourly time series of trading volume, realized

volatility, and FX rate and bid-ask spread evolutions.

To test the empirical predictions, we carry out the following analysis. First, we perform a de-

scriptive analysis that uncovers some (new) stylized facts. For instance, we �nd that FX trading

volume and illiquidity follow intraday pa�erns and seasonalities indicating market fragmenta-

tion across geographical areas and FX rates consistent with the OTC nature of the FX global

market. �en, we perform various regressions to test the three above-mentioned theoretical

propositions. �ree main results emerge: First, trading volume and volatility are linked by a

very strong positive relationship both within and across FX rates. To provide more direct evi-

dence that both are governed by disagreement between the agents, we show that volume and

volatility increase with heterogeneous beliefs as measured in Beber et al. (2010). In contrast,

large and directional FX moves associated with li�le disagreement identi�ed by co-jumps (Ca-

porin et al., 2017) do not generate abnormal trading volume, while being associated with above-

average volatility. Consistent with our theory, this �nding suggests that new common informa-

tion such as macroeconomic announcements (see e.g. Bollerslev et al., 2016) on which everyone

agrees might give rise to above-average volatility but not abnormal trading volume. Second, we

provide evidence that our illiquidity measure is e�ective in capturing FX illiquidity episodes and

correlate with well-accepted measures of FX illiquidity. Finally, using three methods, namely the

Principal Component Analysis, regression analysis, and the connectedness index of Diebold and

Yilmaz (2014), we perform a comprehensive analysis of commonalities in FX volume, volatility,

and illiquidity. A�er documenting and measuring them, we provide evidence that more liquid

currencies have stronger commonalities and obey more to (triangular) arbitrage conditions.

Our paper contributes to two strands of the literature: First, we contribute to prior research

2�e entire set includes 33 currency pairs but the Hungarian forint (HUF) joined the CLS system later. �erefore,
EURHUF and USDHUF are available only since 07 November 2015.
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on trading and liquidity in �nancial markets. While most of the previous studies on volume has

mainly focused on stocks,3 there is a growing literature on trading and liquidity in FX markets

(e.g. Mancini et al., 2013 and Karnaukh et al., 2015). Most previous studies focus on speci�c as-

pects of FX liquidity such as transaction costs4 or order �ow, which is as the net of buyer-initiated

and seller-initiated orders. Following the seminal paper by Evans and Lyons (2002), order �ow

has drawn much a�ention as the main determinant of FX rate formation.5 In contrast, the lit-

erature on trading volume is scant due to the paucity of comprehensive data on the FX global

volume. Prior research has focused on the interdealer segment in which Electronic Broking Ser-

vices (EBS) and Reuters are the two predominant platforms. For instance, Evans (2002) uses

Reuters D2000-1 data, Payne (2003) analyze data from D2000-2 while Mancini et al. (2013) and

Chaboud et al. (2007) utilize data from EBS.6 Only with the recent access to CLS data, research

on FX global volume at relatively high frequencies (e.g. daily) became possible.7 Fischer and

Ranaldo (2011) look at global FX trading around central bank decisions. Hasbrouck and Levich

(2017) measure FX illiquidity using volume and volatility data. Gargano et al. (2019) analyze the

pro�tability of FX trading strategies exploiting the predictive ability of FX volume. We add to

the extant literature theoretically and empirically. On the one hand, we build a continuous-time

model in a multiple-currency se�ing, which serves the purpose of de�ning a theoretical founda-

tion for FX price determination in connection to FX volume, volatility, and illiquidity. Although

abstracting from some market “imperfections” such as liquidity frictions, our model provides

a closed-form and intuitive solution for illiquidity in terms of price impact proxies such as in

Amihud (2002). Furthermore, we are the �rst providing a joint empirical analysis of intraday FX

global volume, (realized) volatilities, and illiquidity that support two empirical predictions from

our theory: First, disagreement drives trading volume and volatility; Second, our FX measure in

3For a recent literature survey, see Vayanos and Wang (2013).
4Transaction costs are typically measured in terms of bid-ask spreads that tend to increase with volatility. FX

transaction costs in spot and future markets are studied in Bessembinder (1994), Bollerslev and Melvin (1994), Chris-
tiansen et al. (2011), Ding (1999), Hartmann (1999), Huang and Masulis (1999), Hsieh and Kleidon (1996), Mancini
et al. (2013).

5Among others, order �ow is studied in Bjønnes and Rime (2005), Berger et al. (2008), Frömmel et al. (2008),
Breedon and Ranaldo (2013), Evans and Lyons (2002), Evans (2002), Mancini et al. (2013), Payne (2003), and Rime
et al. (2010).

6Other sources of trading volume data are proprietary data sets from some speci�c banks (see e.g. Bjønnes and
Rime (2005) and Menkho� et al. (2016)), central banks, or FX futures or forward contracts (see e.g. Bjønnes et al.
(2003), Galati et al. (2007), Grammatikos and Saunders (1986), Levich (2012), and Bech (2012)).

7Except from CLS, the only source of global FX trading volume is the triennial survey of central banks conducted
by the BIS. It provides a snapshot of FX market volume on a given day once every three-years.
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the spirit of Amihud proxy is e�ective in measuring FX illiquidity.

Second, we contribute to the literature on commonalities in liquidity, which has extensively

studied liquidity co-movements of stocks (e.g. Chordia et al., 2000, Hasbrouck and Seppi, 2001,

and Karolyi et al., 2012). In FX markets, this issue is empirically analyzed in Mancini et al. (2013)

and Karnaukh et al. (2015). We contribute to this strand of literature by studying commonality

in trading volume and the proposed FX illiquidity measure, as well as some pricing implications

stemming from commonality in FX liquidity. Prior research has also provided some theoretical

explanations for liquidity commonality. For instance, when dealers are active in two markets

(or assets), they tend to reduce their liquidity supply in case of trading losses (Kyle and Xiong,

2001) or under funding constraints (Cespa and Foucault, 2014). From an asset pricing perspec-

tive, investors require higher expected returns and invest less in assets exposed to liquidity risk

(e.g. Acharya and Pedersen, 2005); additionally, illiquidity and low asset prices might endoge-

nously result from erosion of arbitrageurs’ wealth (Kondor and Vayanos, 2018). Even if our the-

ory abstracts from these frictions, commonality in trading volume naturally arises from agents’

disagreement and arbitrage trading. Empirically, we �nd consistent results with the adage that

”liquidity begets liquidity” (e.g. Foucault et al., 2013) and that liquidity begets price e�ciency in

the sense that more liquid currencies have stronger commonality and are less subject to arbitrage

deviations.

�is paper is organized as follows. Section 2 presents the simple theoretical se�ing for an

uni�ed analysis of volatility, volume and illiquidity on the FX rates, and their commonalities.

Section 3 introduces the dataset and discusses summary statistics. Section 4 presents the empir-

ical analysis. Section 5 concludes the paper.

2 A uni�ed model for FX rates, volatility and volume

We depart from the Mixture-of-Distribution Hypothesis (MDH) of Clark (1973) and Tauchen and

Pi�s (1983), which provides a stylized representation of the supply/demand mechanism on the

market at the intradaily level.8 Let’s �rst consider a world with two currencies, x (base) and y

(quote). We assume that the market consists of a �nite number J ≥ 2 of active traders, who take

8See also the empirical analysis in Andersen (1996) and the survey in Karpo� (1987). According to Bauwens
et al. (2006) only one out of the 19 studies of MDH is on exchange rates.
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long or short positions on the FX rate x |y. Within a given trading period of unit length (e.g. an

hour, a day, a week), the market for the currency pair x |y passes through a sequence of i = 1, . . . I

equilibria. �e evolution of the equilibrium price is motivated by the arrival of new information

to the market. At intra-period i , the desired position of the j-th trader (j = 1, . . . , J ) on the FX

rate x |y is given by

q
x |y
i,j (t) = ξ

x |y(p
x |y,∗
i,j − p

x |y
i ), ξ x |y > 0 (1)

where px |y,∗i,j is the reservation price of the j-th trader and p
x |y
i is the current market price (both

measured in logs). �e reservation price of each trader might re�ect individual preferences,

liquidity issues, asymmetries in information sets and/or di�erent expectations about the funda-

mental values of the FX rate. In general, the reservation price can deviate from the market price

because of idiosyncratic reasons inducing the j-th trader to trade. �e term ξ x |y is a positive

constant capturing the market depth: �e larger ξ x |y , the larger quantities of x can be exchanged

fory (and viceversa) for a given di�erence px |y,∗i,j −p
x |y
i . In other words, ξ x |y measures the capacity

of the market to allow large quantities to be exchanged at the intersection between the demand

and supply side, thus recalling the concept of resilience. Figure 1 illustrates the demand/supply

mechanism of the j-th trader for the x |y FX rates. If (px |y,∗i,j − p
x |y
i ) > 0, this means that the j-th

trader believes that the equilibrium trading price of x |y is too low, i.e. currency x should be more

expansive relatively to y, so he will buy x and sell y. On the contrary, if (px |y,∗i,j − p
x |y
i ) < 0, the

j-th trader will buy y and sell x . �e amount associated with a unit change of px |y,∗i,j −p
x |y
i is given

by the slope ξ x |y . �e baseline assumptions of the MDH (linearity of the trading function and

-10 -8 -6 -4 -2 0 2 4 6 8 10

p
j
x|y,*-px|y

-5

-4

-3

-2

-1

0

1

2

3

4

5

q jx|y

SELL X, BUY Y

SELL Y, BUY X

 x|y

Figure 1: Trading function for the j-th trader for x |y with ξ x |y = 0.5.
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constant number of active traders) are inevitably very stylized. As for the form of the equilibrium

function in (1), note that the trades take place on short intradaily intervals of length ∆ = 1/I and

they are generally associated with small price variations. �erefore, it is not restrictive to assume

the equilibrium function to be linear on small price changes. Furthermore, the assumption of J

active traders observe one market price is more consistent with a centralized market or a frag-

mented one but with a reference price accessible to trading community, whereas FX rates can be

dispersed and heterogeneous outside the interdealer segment, as emphasized by Evans and Rime

(2016).

As new information arrives, the traders adjust their reservation prices, resulting in a change

in the market price given by the average of the increments of the reservation prices. �is means

that the equilibrium condition is
∑

j q
x |y
i,j = 0. Hence, the average of the reservation prices clears

the market, that is px |yi =
1
J

∑J
j=1 p

x |y,∗
i,j , and the generated trading volume is

ν
x |y
i =

ξ x |y

2

J∑
j=1
|∆p

x |y,∗
i,j − ∆p

x |y
i |,

where ∆px |y,∗i,j = p
x |y,∗
i,j −p

x |y,∗
i−1,j and ∆p

x |y
i,j = p

x |y
i,j −p

x |y
i−1,j . �e increments of the reservation log-prices

are given by

∆p
x |y,∗
i,j = ϕ

x |y
i +ψ

x |y
i,j , with j = 1, . . . , J ,

where ϕx |yi is the common information component about the FX rate x |y, stemming from public

information events, such as those associated with central banks’ announcements. �e common

term ϕ
x |y
i could also be related to events that trigger common directional expectations among the

practitioners about a speci�c currency. �e term ψ
x |y
i,j represents the investor’s speci�c compo-

nent about the FX rate between x and y. We assume the following continuous time version of

the model to form the basis for volatility measurement, where the dynamics of the the investor-

speci�c component about the FX rate is given by

dψ
x |y
j (t) = µ

x |y
j (t)dt + σ

x |y
j (t)dW

x |y
j (t), j = 1, . . . , J (2)

whereWj(t) is a Wiener process that is independent between each trader, i.e.Wl (t) |=Wm(t)∀l ,m
and the term σ

x |y
j (t) ≥ 0 is the stochastic volatility process of the j-th trader which is assumed to
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have locally square integrable sample paths. �e term µj(t) is a predictable and �nite variation

dri� process, which might represent the long-run expectation of the j-th trader about the FX rate

and it could be function of fundamental quantities like interest rates di�erentials and long-term

macroeconomic views. By also allowing σx |y
j to be di�erent across traders, we are implicitly in-

troducing heterogeneity among them. �is also reconciles with many realistic features including

the evidence of long-memory in volatility that is obtained by the superposition of traders oper-

ating at di�erent frequencies, see for instance the heterogeneous autoregressive model of Müller

et al. (1997) and Corsi (2009). �is setup is coherent with a representation of a frictionless mar-

ket where each trader participates through its reservation price to the price discovery process

by carrying new information. On the i-th discrete sub-interval of length ∆ = 1
I ,9

ψ
x |y
i,j =

∫ ∆i

∆(i−1)
µj(s)ds +

∫ ∆i

∆(i−1)
σ
x |y
j (s)dW

x |y
j (s). (3)

Proposition 1. Over an interval of unit length (e.g. a day or a month), the trading volume, ν =∑I
i=1 ν

x |y
i , and the aggregated volatility, asmeasured by the realized variance,RV x |y =

∑I
i=1

(
∆p

x |y
i

)2
,

or by the power variation of Barndor�-Nielsen and Shephard, 2003, RPV x |y =
∑I

i=1 |∆p
x |y
i |, carry

information about the investor disagreement on a given FX rate.

Proof in Appendix A.1.

�e extension to a continuous-time framework allows us to precisely measure the variability

of the FX rates components in the limit for I → ∞, and to relate it to the level of disagreement

among investors leading to the observed trading volume. It should be stressed that the asymptotic

results behind Proposition 1 are derived by abstracting from microstructural frictions (namely

microstructure noise), like transaction costs in the form of bid-ask spread, clearing fees or price

discreteness, which are intimately related and endogenous to the trading process; see the recent

works of Darolles et al. (2015, 2017) for an extension of reduced-form version of the MHD with

liquidity frictions. From a statistical point of view, as I → ∞, the microstructure noise domi-

nates over the volatility signal, thus leading to distorted measurements of the variance. However,

over moderate sampling frequencies, e.g. 5-minute intervals over 24 hours (I = 288), the prices

and quantities determined in equilibrium in each sub-interval can be considered (almost) free of
9For ease of exposition, we assume that trades happen on an equally spaced and uniform grid, i = 1, 2, . . . I .

�is assumption can be relaxed allowing for random trading times.
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microstructure noise contamination, and representative of new equilibria on the aggregated sup-

ply/demand functions. Rather than microstructural features, this se�ing outlines the aggregated

disagreement on fundamentals leading to the price discovery process in which each trader partic-

ipates to the equilibrium price variations in proportion to the information contained in her new

reservation prices. As it is common in the literature on volatility measurement, see Bandi and

Russell (2008) and Liu et al. (2015), in the following analysis we will work under the maintained

assumption that sampling at 5-minute intervals is su�cient to guarantee that a new equilibrium

price is determined. �e la�er is representative of the aggregated information contained on the

demand and supply sides of the market. Furthermore, the assumption of independence between

ϕi andψi,j and across traders does not allow for reversal or spill-over e�ects such as those stud-

ied in Grossman and Miller (1988) to investigate the mechanics of liquidity provision. �e same

type of sequential trading behavior has been recently proved to be responsible for crash episodes

in Christensen et al. (2016) and associated with changes in the level of investors’ disagreement

around important news announcements, see Bollerslev et al. (2016). Despite the stylized set of

assumptions, the next section shows how the theory outlined above can be successfully adopted

as an encompassing framework to characterize the illiquidity and the commonalities in volatility

and volume on the global FX markets.

2.1 Measuring FX Illiquidity

In light of Proposition 1 and analogously to the price impact illiquidity proxy in Amihud (2002),

we can de�ne a continuous-time version of the illiquidity index as

Ax |y := RPV x |y

νx |y
, (4)

which measures the price impact of a given trade, that is the amount of volatility of the FX

rate associated with a unit of trading volume. �e following proposition highlights the main

determinants of market illiquidity.

Proposition 2. Consider the illiquidity measure de�ned in (4). In the limit for I → ∞ and under

10



homogeneity of traders, i.e. σx |y
j = σx |y ∀j = 1, 2, . . . , J ,

p lim
I→∞

Ax |y =
2

ξ x |y J
√
(J − 1)

. (5)

Proof in Appendix A.2.

Proposition 2 shows that on a period of unit length, Ax |y is inversely related to the slope,

ξ x |y , of the equilibrium function in (1). �at is, for a given di�erence between the reservation

price and the market price, Ax |y decreases as this slope increases. In particular, for large values

of ξ x |y large volume would be associated with small variations between the prevailing price and

the reservation price for each trader, thus signaling market depth and liquidity. Instead, when

ξ x |y → 0+, i.e. in the limiting case of a �at equilibrium function in (1), the liquidity is minimal

(and Ax |y diverges), since no actual trade takes place. Under the assumption of homogeneity of

the traders, i.e σ 2
j (t) = σ

2(t) ∀j = 1, . . . , J , Proposition 2 also highlights the inverse relationship

between the number of active traders on the market and illiquidity.10

In the extreme case of only one observation per trading period I = ∆ = 1, the illiquidity

measure in (4) reduces to the original Amihud index (up to the rescaling by
√

2/π ),

Ax |y,∗ =
|r |x |y

νx |y
, (6)

for which it is not trivial to obtain an expression as a function of the structural parameters

analogous to the one in (5). For instance, the expected value of |r |x |y under Gaussianity is

proportional to the daily (constant) volatility parameter, i.e. E
(
|r |x |y

)
= σ

√
2
π , where σ =√

Var (ϕ) +Var (ψ )/J in the original MDH theory. In the classic framework, inference on the

structural parameters is performed through GMM by relying on the unconditional moments

of the observable quantities which depend on the underlying (unobservable) information �ow,

see Richardson and Smith (1994) and Andersen (1996). �e availability of high-frequency data

coupled with the theory of quadratic variation makes the volatility and consequently the in-

formation �ow measurable quantities. �is means that inference on the structural parameters

becomes more precise as we adopt moment conditions based on high-frequency data, see Li and

10Relaxing the assumption of homogeneity would result in the ratio of two aggregated volatility measures, each
estimating the weighted average of the variance carried by each trader, see equation (30) in Appendix A.2.
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Xiu (2016).

2.2 Commonalities in FX volume and volatility

In this section, we derive equilibrium relations between returns, trading volumes and volatilities

across di�erent FX rates. �ese relations are instrumental to the interpretation of commonalities

in trading volumes and volatilities as well as information processing in global FX markets. Let’s

therefore consider a world with three currencies, x , y and z. �e market for the currency pairs

x |y, x |z and z |y also passes through a sequence of i = 1, . . . I equilibria and the evolution of the

equilibrium price of each currency pair is motivated by the arrival of new information to the

market. By the triangular no-arbitrage parity it must hold that

p
x |y
i = p

x |z
i + p

z |y
i , (7)

where px |zi =
∑J

j=1 p
x |z,∗
i and p

z |y
i =

∑J
j=1 p

z |y,∗
i . By imposing that ∆px |z,∗i,j = ϕx |zi + ψ x |z

i,j , and

∆p
z |y,∗
i,j = ϕ

z |y
i +ψ

z |y
i,j , the synthetic return on x |y results to be

r̃
x |y
i = ϕx |zi + ϕ

z |y
i +

1
J

J∑
j=1

ψ x |z
i,j +

1
J

J∑
j=1

ψ
z |y
i,j . (8)

Assuming that the common information component on the rate x |y, can be disentangled into

two currency-speci�c terms ϕxi and ϕyi , with ϕx |yi = ϕ
x
i − ϕ

y
i ,11 it follows that

r̃
x |y
i = ϕxi − ϕ

y
i +

1
J

J∑
j=1

ψ x |z
i,j +

1
J

J∑
j=1

ψ
z |y
i,j ,

where the common information part of r̃x |yi is the same as for rx |yi , that is ϕxi − ϕ
y
i . It follows

that the MDH coupled with the triangular no-arbitrage relation on the FX rates, i.e. rx |yi = r̃
x |y
i ,

prescribes that
1
J

J∑
j=1

ψ
x |y
i,j =

1
J

J∑
j=1

ψ x |z
i,j +

1
J

J∑
j=1

ψ
z |y
i,j , (9)

11In Section 4.1 we discuss a strategy to separately identify ϕxi and ϕyi based on a cross section of FX rates and
provide an empirical validation of such an assumption.
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which means that the average of the traders’ speci�c terms on x |y must be equal to the sum of

the average traders’ speci�c terms of z |y and x |z. �is means that each trader can take a direct

position on x |y or operate on the synthetic rate by forming independent beliefs on x |z and z |y,

thus generating trading volume on each individual FX market.

Proposition 3. Trading volume, volatility and liquidity across FX rates are linked by no-arbitrage

constraints, which lead to the commonalities across FX rates. �e synthetic volatility, as measured

by R̃V
x |y
=

∑I
i=1 (̃r

x |y
i )

2, and synthetic volume, denoted as

ν̃
x |y
i =

ξ x |y

2

J∑
j=1
|∆px |z,∗i,j − ∆p

x |z
i + ∆p

z |y,∗
i,j − ∆p

z |y
i |, (10)

reveal the strength of the correlation across FX rates.

Proof in Appendix A.3.

Proposition 3 introduces the concept of synthetic volatility and volume, which are associ-

ated with the no-arbitrage equilibrium constraints and depend on the extent of the individual

disagreement on the FX rates of x |z and z |y. Furthermore, both synthetic volatility and volume

are functions of the aggregated correlation in beliefs between x |z and z |y, and hence expression

of the commonalities in the global FX rates. For a given level of traders’ disagreement on x |y

(leading to trading volume on x |y), we can measure the associated synthetic volume on x |z and

z |y, which is proportional to the correlation between the aggregated reservation prices on x |z

and z |y. �e same holds true for the synthetic volatility, as measured by the realized variance of

the synthetic return.

3 Data and Preliminary Analysis

3.1 Data Sets

Our empirical analysis relies on two data sets covering 29 currency pairs (15 currencies) over

the period from November 2011 to November 2016.12 First, trading volume data come from CLS,

12�e full dataset contains data for 18 major currencies and 33 currency pairs. To maintain a balanced panel, we
exclude the Hungarian forint (HUF), which enters the dataset only on 07 November 2015. Moreover, we discard US-
DILS and USDKRW due to very infrequent trades. We obtain very similar results by including them. �e remaining
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which is the largest payment system for the se�lement of foreign exchange transactions launched

in 2002. By means of a payment-versus-payment mechanism, this infrastructure supports FX

trading by removing se�lement risk and supporting market e�ciency. For each hour of our

sample period and each currency pair, we observe the se�lement value and number of se�lement

instructions. Following the literature (e.g. Mancini et al., 2013), we exclude observations between

Friday 10PM and Sunday 10PM since only minimal trading activity is observed during these

nonstandard hours.13 In 2017, the core of CLS was composed of 60 se�lement members including

the top ten FX global dealers, and thousands of third parties (other banks, non-bank �nancial

institutions, multinational corporations and funds), which are customers of se�lement members.

�e total average daily traded volume submi�ed to CLS was more than USD 1.5 trillion, which

is around 30% of the total daily volume recorded in the last available BIS triennial survey (Bank

of International Se�lements 2016). However, a�er adjusting for the large fraction of BIS volume

originated from interbank trading across desks and double-counted prime brokered ”give-up”

trades, the CLS data should cover about 50% of the FX market (Gargano et al., 2019 & Hasbrouck

and Levich, 2017). In our study, we focus on FX spot transactions. Except for some exceptions

such as the Renminbi, the CLS spot FX rates in our sample are highly representative of the entire

FX market. For instance, the currency pairs involving the USD and EUR cover more than 85%

(94%) of the total trading volume of the BIS triennial survey.

To the best of our knowledge, only few papers have analyzed CLS volume data so far. First,

Fischer and Ranaldo (2011) study �ve aggregated currencies (e.g. all CLS-eligible currencies

against the U.S. dollar, Euro, Yen, Sterling, and Swiss franc) rather than currency pairs. Has-

brouck and Levich (2017) analyze every CLS se�lement instruction during April 2013. Gargano

et al. (2019) use the same dataset to perform an asset pricing analysis. Ranaldo and Somogyi

(2019) analyze the heterogeneous price impact of CLS order �ows decomposed by market par-

ticipants .

�e second data set is obtained from Olsen Financial Technologies, which is the standard

source for academic research on intraday FX rates. By compiling historical tick data from the

29 currency pairs are: AUDJPY, AUDNZD, AUDUSD, CADJPY, EURAUD, EURCAD, EURCHF, EURDKK, EURGBP,
EURJPY, EURNOK, EURSEK, EURUSD, GBPAUD, GBPCAD, GBPCHF, GBPJPY, GBPUSD, NZDUSD, USDCAD, US-
DCHF, USDDKK, USDHKD, USDJPY, USDMXN, USDNOK, USDSEK, USDSGD, and USDZAR.

13In this paper, times are expressed in GMT
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main consolidators such as Reuters, Knight Ridder, GTIS and Tenfore, Olsen data are representa-

tive of the entire FX spot market rather than speci�c segments such as the interdealer FX market

dominated by two electronic limit order markets: EBS and Reuters. For each minute of our sam-

ple period and each currency pair, we observe the following quotes: bid, ask, high, low, and

midquotes. With these data at hand, we can analyze at least four aspects of FX rates: (i) the FX

rate movements at one minute or lower frequencies; (ii) the realized volatility or other measures

of return dispersion; (iii) the quoted bid-ask spread as a measure of transaction cost; and (iv)

violations of triangular arbitrage conditions.

3.2 Descriptive Analysis

In this subsection, we highlight some (new) stylized facts characterizing the times series of vol-

ume, volatilities and illiquidity measures associated with the 29 FX rates under investigation.

First, we look into intraday pa�erns and then we study the daily time series of FX volume, volatil-

ity, and illiquidity.

To start with the intraday analysis, Figure 2 displays the total hourly volume series, denoted

as ν tott =
∑L

l=1v
l
t , where vlt is the hourly volume on the l-th FX rate. �is plot highlights the size
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Figure 2: Time series and auto-correlation function of the total global volume.

and deepness of the FX market, with an average of around 20 billions USD dollar traded every

hour. Moreover, the series of total volume is rather persistent and it clearly displays cyclical

pa�erns, which can be associated with strong intradaily seasonality. We explicitly model the
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intradaily pa�erns by estimating the following model with OLS

log(ν lt ) = δtβ + ϵt , (11)

where δt contains hourly and day-of the-week dummies. We can also obtain the �ltered volume

as ν lt =
ν lt
eδt β̂

. �e hourly average of the total global volume is reported in Figure 3. �e plot

highlights that the average total volume is higher during the opening hours of the European and

American stock markets, while it is very low between 10PM and 12AM as most of the largest

stock markets are closed, while it has a relative peak associated with the opening of Tokyo (2

AM). Moreover, the total volume is the largest on average between 3PM and 4PM, i.e. before

the WMR Fix, for which there is a well documented literature about the large traders submi�ing

a rush of orders before the se�ing of the daily benchmarks for FX prices, see e.g. Marsh et al.

(2017) and Evans (2018). Finally, Figure 3 shows that the �ltering successfully removes the largest

part of the seasonal pa�ern and that the �ltered volume displays signi�cant autocorrelation a�er

many periods.
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Figure 3: Hourly average of the total global volume and ACF of the �ltered volume.

Turning the a�ention to individual FX rates, Figure 4 reports the hourly average share of the

total volume of the �ve most liquid FX rates (by volume size). Firstly, as expected all the most

liquid FX rates involve the USD as either base or quote currency. As for the total volume, the

trading volume of the most liquid FX rates displays clear (intraday) seasonal pa�erns. For the

individual FX rates, these pa�erns are suggestive of local e�ects in given geographical areas,

coherent with the OTC segmented nature of FX markets. For instance, USDJPY covers around

30% of the total FX volume between 12PM and 4PM, that are the hours in which Far East markets
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Figure 4: Hourly volume averages of the �ve most liquid FX rates, which are (in order) USDEUR, USDJPY,
USDGBP, USDAUD, USDCAD.

are open. AUDUSD contributes with a 15% in the same hours, while its market share strongly

declines to 7% during the central hours of the day. EURUSD is by far the most traded FX rate,

with a share above 30% between 7AM to 6PM. A similar pa�ern characterizes also GBPUSD with

an average share ranging between 5% and 10%. Finally, USDCAD is mostly traded at the opening

of the business hours in North America, i.e. between 12PM and 10PM, with approximately 10%

share on the total volume. �ese �ve FX rates amount for a share of more than 70% of the total

global volume in every hour. Summarizing, the seasonal pa�erns are clearly discernible in two

dimensions. First, on an intraday scale the trading volume follows the working time in each

country or jurisdiction de�ning the currency pair. �is means that round-the-clock, the trading

volume of New Zeeland dollar is the �rst to increase, followed by Asian, European, and American

currencies. Second, o�cial banking holidays clearly reduce the trading activity. �e seasonalities

and calendar e�ects will be carefully considered in our empirical analysis.

Concerning the relationship between volatility and volume, Figure 5 shows that the hourly

averages of realized volatility and volume for USDEUR and USDJPY follow the same pa�erns.

At the intradaily level when the volatility on the FX rates is high, also the volume is high, which

points to a wider variation of traders’ reservation prices. �us, Figure 5 provides prima facie

evidence to Proposition 1 in our theoretical se�ing, that is, volatility and volume are mostly

governed by a common latent factor, which seen through the lenses of the MDH represents the
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Figure 5: Hourly Averages of RV and VOL. In Panel a) USDEUR, in Panel b) USDJPY.

information �ow proportional to the level of heterogeneous beliefs (disagreement) between the

agents.

Before performing the empirical analysis and test our model predictions, we examine how

daily changes in trading volume correlate with daily changes in realized volatility and other

factors that proved to explain FX liquidity in the previous literature (e.g. Mancini et al., 2013 and

Karnaukh et al., 2015) and trading activity in stock markets (e.g. Chordia et al., 2001).

Some of these variables are likely to determine each other endogenously. Rather than causa-

tion, the purpose of this analysis is to document some novel correlation pa�erns pertaining to FX

trading volume. More speci�cally, we perform a panel regression of all currency pairs, in which

the daily FX volume is explained by daily (realized) volatility, (average intraday) relative bid-

ask spread (BAS), a dummy variable for the dollar appreciation, two common proxies of market

stress such as the TED spread (the yield spread between the U.S. three-month Libor and T-bills)

and FX VIX (i.e. the JP Morgan Global FX volatility index), and four weekday dummy variables

equal to one if the trading day is on Monday, Tuesday, �ursday, and Friday, respectively. All

variables except the dummy variables are taken in logs and changes and all regressions include

the lagged dependent variable as additional regressor. For sake of comparison, we repeat similar

regressions using dependent variables the realized volatility, the relative bid-ask spread, as well

as the Amihud illiquidity measure, which will be studied in more details later.

Some novel pa�erns emerge from the analysis reported in the Table 1. On the one hand, FX

trading volume increases with realized and implied FX volatility as well as TED spread, whereas

it decreases with the relative bid-ask spread. Trading volume follows an inverted U-shape across
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(1) (2) (3) (4)
∆ Volume ∆ RPV ∆ Amihud ∆ Relative BAS

∆ Volume - 0.1374a - -0.04395a
(98.778) (-43.356)

∆ RPV 1.301a - - 0.3995a
(92.12) (148.69)

∆ Relative BAS -0.9197a 0.9049a 0.7961a -
(-40.87) (154.33) (42.501)

USD 0.00679 -0.00852a -0.00866a -0.00856a
(1.6193) (-6.232) (-1.9637) (-9.4226)

∆ TED 0.1174b 0.0301c -0.1746a -0.0754a
(2.347) (1.8444) (-3.3154) (-6.9454)

∆ VXY 0.1956b 0.6120a -0.5974a 0.4271a
(2.338) (22.477) (-6.8248) (23.521)

Monday -0.3508a 0.0324a 0.3285a -0.0858a
(-50.68) (14.572) (45.258) (-60.692)

Tuesday 0.0206a -0.0176a -0.1089a -0.0362a
(3.01) (-8.1402) (-15.509) (-24.383)

�ursday -0.1072a 0.0005 0.1300a 0.0054a
(-16.65) (0.2354) (19.102) (3.9088)

Friday -0.0766a -0.1072a 0.1932a 0.0643a
(-11.34) (-51.62) (28.41) (46.22)

Lagged Dep. -0.3494a -0.0458a -0.4211a -0.2114a
(-81.065) (-35.95) (-91.694) (-55.475)

Constant 0.0986a 0.0231a -0.1034a 0.0146a
(19.167) (14.227) (-19.324) (13.516)

R2 0.418 0.586 0.404 0.573
N 37055 37054 37054 37055

Table 1: Regressions of volume, volatility, illiquidity, and bid-ask spread. Volume and RPV are the daily
trading volume and realized variance respectively, Amihud is the ratio between daily RPV and daily vol-
ume, and the bid-ask spread is the daily average of one-minute spreads. �e t-statistics are in parentheses
and the error variance are robust to heteroskedasticity and autocorrelation in the residuals. Except for
dummy variables, all variables are taken in logs and changes. �e superscripts a, b and c indicate signi�-
cance at 1%, 5% and 10% signi�cance level respectivelyy.

weekdays, that is, larger trading volumes tend to occur in the middle of the week. On the other

hand, realized volatility increases with bid-ask spreads and tends to be lower when the U.S.

dollar appreciates, possibly due to its status as international currency reserve and safe haven

against several currencies (e.g. Ranaldo and Söderlind, 2010 and Maggiori, 2017). In addition

to FX volume, (negative) autocorrelation and weekdays e�ects are discernible for FX volatility,
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illiquidity, and relative bid-ask spread.

4 Empirical Analysis

Our theoretical setup in Section 2 o�ers three main propositions. For each of them we provide

an in-depth empirical analysis in a separate subsection.

4.1 Determinants of FX trading volume and volatility

�e �rst theoretical proposition postulates that volatility and trading volume are proportional

to the level of heterogeneous beliefs between agents, that is traders’ disagreement about the

fundamental value of the FX rates. �is proposition delivers two main empirical predictions: On

the one hand, both volume and volatility should increase with disagreement. On the other hand,

common news leading to a currency appreciation or depreciation with no or li�le disagreement

can generates above-average volatility but no extraordinary trading volume.

To test the �rst empirical prediction, we follow Beber et al. (2010) and measure disagreement

as heterogeneity in beliefs of market participants by using a detailed data set of currency forecasts

made by a large cross-section of professional market participants. More speci�cally, we collect

all �omson Reuters surveys recorded at the beginning of every month during our sample period

and compute measures of cross-sectional dispersion such as the (standardized) standard deviation

of FX forecast and the high-low range from the distribution of FX forecasts of on average about

50 market participants.14 �is measure of heterogeneity in beliefs that we call disagreement is

the main regressor in two panel regressions in which total trading volume and realized volatility

are the dependent variables. In addition to our measure of disagreement, we include a constant,

the lagged dependent variable, and FX illiquidity proposed in Karnaukh et al., 2015 as a control.

All variables are taken in logs and changes.15 As shown in column (1) and (2) of Table 2, both

14�e total number of monthly observations included in the regression is 940, which includes the following 26
currency pairs: AUDJPY, AUDNZD, CADJPY, EURAUD, EURCAD, EURCHF, EURGBP, EURJPY, EURNOK, EURSEK,
GBPCAD, GBPCHF, GBPJPY, USDAUD, USDCAD, USDCHF, USDEUR, USDGBP, USDHKD, USDJPY, USDMXP, US-
DNOK, USDNZD, USDSEK, USDSGD and USDZAR. Not for all currency pairs, forecasts are available from Novem-
ber 2011 onwards. �e exact number of market participants depends on the currency pair. We report results using
standard deviations of FX forecast. Using ranges, we obtain very similar results.

15We perform additional analyses including further regressors such as the TED and VXY and the results remain
qualitatively the same.
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(1) (2) (3) (4)
∆ Volume ∆ RV ∆ Amihud ∆ Relative BAS

∆ Disagreement 0.0503b 0.1736a 0.0397b 0.0373a
(2.25) (3.41) (1.96) (3.62)

∆ Illiquidity 0.0779a 0.5431a 0.1961a 0.1405a
(5.29) (8.12) (5.66) (10.65)

Lagged Dep. -0.3499a -0.2625a -0.2389a 0.0289
(-10.03) (-5.34) (-4.38) (0.97)

Constant -0.0097 -0.0113 0.0041 -0.0067c
(-1.50) (-0.81) (0.61) (-1.91)

R2 0.146 0.367 0.254 0.345

Table 2: Monthly regression analysis - disagreement. �e t-statistics are in parentheses and the error
variance are robust to heteroskedasticity and autocorrelation in the residuals. Disagreement is the stan-
dardized standard deviations of �omson Reuters forecasts, which are available on a monthly basis. Vol-
ume and RV are the daily trading volume and realized variance respectively, Amihud is the ratio between
daily RPV and daily volume, bid-ask spread is the daily average bid-ask spread, and illiquidity is taken
from Karnaukh, Ranaldo and Söderlind (2015). Except for illiquidity, all variables are taken in logs. �e
superscripts a, b and c indicate signi�cance at 1%, 5% and 10% signi�cance level respectively.

trading volume and volatility increase with disagreement providing evidence in support to our

�rst empirical prediction. Moreover, both trading volume and volatility tend to increase with FX

illiquidity, consistent with dealers’ inventory imbalances and hot potato e�ects Lyons (1997).

�e next empirical prediction is that common news or informational events sparking li�le

disagreement across traders should not generate any extraordinary trading volume but it might

result in above-average volatility. More speci�cally, the model prescribes that if new informa-

tion is common as for macroeconomic announcements, then traders would promptly revise their

reservation prices in the same manner and nearly no additional transaction volume should be

generated. To avoid confounders and overlapping occurrences, the detection of such informa-

tional events needs an accurate identi�cation econometric technique and granular (intraday)

data. �e recent advances in the literature on jump processes come to the aid of this analysis.

Similarly to Bollerslev et al. (2016), we rely on a simple setup for the common news component,

i.e. the ”jumps”, to separately identify it from the component of the variations in the FX rates due

to the disagreement among traders.16 For instance, ϕx |yi can be modeled as compound Poisson

16Other studies associating large price jumps with news announcements are in Andersen et al. (2007) and Lee
(2011).
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processes as

ϕ
x |y
i =

N
x |y
i∑
l=1

Z
x |y
l
, (12)

where N
x |y
i is an independent Poisson random variable with intensity λx |y∆, where λx |y is ex-

pressed with respect to the unit scale (e.g. daily). Z
x |y
l

iid
∼ Dx |y(θx |y) ∈ R where θx |y are the

parameters associated with the distribution Dx |y . Furthermore, we assume that ϕx |yi can be fur-

ther decomposed into currency speci�c variations, that is ϕx |yi = ϕxi − ϕ
y
i . For instance, we can

assume that ϕxi =
∑N x

i
l=1 Z

x
l

and ϕyi =
∑N

y
i

l=1 Z
y
l

. �e terms ϕxi and ϕyi cannot be uniquely identi�ed

by looking at a single FX rate since a large variation in the FX rate might be due to good (bad)

news on x or bad (good) news on y. �erefore, we rely on the theory of co-jumps, as developed

in Caporin et al. (2017), to identify ϕxi given a cross section of FX rates with the same base cur-

rency x . In other words, the simultaneous occurrence of a jump in all the FX rates trading with

a given base currency x allows us to identify episodes characterized by the ex-post realization

of a currency-speci�c news common to all traders. In turns, this enables us to identify large and

sudden directional appreciations or depreciations of one currency against the other currencies

associated with no or li�le disagreement. �e test for co-jumps proposed by Caporin et al. (2017)

takes the form

CJ =
1
ζ

N∑
j=1

(
SRVj − S̃RV j

)2

SQj
, (13)

where N denotes the number of FX rates, ζ is a design parameter, SRV is the smoothed ran-

domized realized variance of Podolskij and Ziggel (2010), S̃RV is the smoothed version of the

truncated realized variance estimator of Mancini (2009) which is robust to jumps, while SQ is a

smoothed estimator of the quarticity. Under the null hypothesis of absence of co-jumps, CJ con-

verges to a chi-square distribution with N degrees of freedom. Under the alternative hypothesis

of at least one co-jump across all N series, CJ diverges.

Figure 6 illustrates two representative episodes detected with the test for co-jumps developed

in Caporin et al. (2017).17 �e le� panel reports the log-returns of the FX rates of EUR against

the six major currencies, USD, GBP, CHF, AUD, CAD and JPY on November 6, 2015. �e sudden

depreciation of the Euro occurred in reaction to a speech by the President of ECB, Mario Draghi

17We thank the authors for sharing with us their MATLAB code to detect co-jumps.
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Figure 6: Co-jumps analysis. �e �gures reports the �ve-minute returns on six FX rates on days when the
test of co-jumps of Caporin et al. (2017) has detected signi�cant jumps at 0.01% signi�cance level. �e le�
plot reports the returns of the FX rates of USD, GBP, CHF, AUD, CAD and JPY against EUR on November
6, 2015. �e right plot reports the returns of the FX rates of EUR, GBP, CHF, AUD, CAD and JPY against
USD on May 1, 2014.

reinforcing traders’ belief about the continuation of the Eurosystem’s bond purchases (�antita-

tive Easing) as a stabilization tool to resolve the crisis situations in the �nancial market. �e FX

rate reacted with a sudden depreciation of EUR against all other currencies by approximately 1%

on an interval of �ve minutes. �e magnitude of such a variation is several times larger than the

variation under normal market conditions, where the changes in the reservation prices of each

individual trader is averaged over J traders. An analogous evidence arises for the appreciation

of the USD against all major currencies on May 1, 2014, following the rumors on the beginning

of a tapering policy by the Federal reserve.

To test our second empirical prediction, we examine whether trading volume signi�cantly

increases when the FX rates are hit by large and directional news. Using hourly time series, we

perform the following panel regression with �xed e�ects

Vi,t = αi + βC Jt + δBAi,t + γhht + γwwt + ρVi,t−1 + εi,t , (14)

where Vi,t is the log-volume on the i-th FX rate trading against a given base currency, C J is a

dummy variable for a signi�cant co-jump on the base currency. We control for illiquidity by

including BAi,t , i.e. the relative bid-ask spread on the i-th FX rate, and seasonal e�ects with ht

and wt that are hourly and day-of-the-week dummies. �e coe�cient β captures the sudden in-
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crease/reduction in the average trading volume associated with co-jumps. To guarantee enough

counterparts to each currency, we analyze the four main currencies, i.e. co-jumps of USD, EUR,

JPY, and GBP. Regression (14) can be considered the multiple-jumps analogous in the panel set-

ting of the jump regression formalized in Li et al. (2017) and applied in Bollerslev et al. (2016) in

the context of macroeconomic announcements. We replicate this analysis for realized volatility.

Table 3 reports the estimation results for four di�erent base currencies, EUR, GBP, USD and

JPY and 6 FX rates each (including also CHF, AUD and CAD). For the trading volume, the coef-

�cient β is almost never signi�cant at 5% level supporting the hypothesis that despite a sizable

currency movement, common news with li�le disagreement does not induce abnormal trading

volume. On the other hand, (realized) volatility is positively a�ected by the arrival of large di-

rectional news in almost all cases. To sum up, as prescribed by the theory common news that is

similarly interpreted by all market participants induces price variation but no abnormal trading

volume. On the other hand, both volume and volatility tend to increase with disagreement.

EUR GBP USD JPY
Volume FE PO FE PO FE PO FE PO
Baseline 0.0172 0.0170 -1.2007b 0.7844 0.1082 0.1083 -0.2252b -0.2256b

Controls 0.0412 0.0147 -0.0683 -0.1257 0.0609 0.0346 -0.0168 -0.0799

EUR GBP USD JPY
Volatility FE PO FE PO FE PO FE PO
Baseline 0.6586a 0.6579a 0.0511 0.0510 0.3966a 0.3960a 0.4233a 0.4229a

Controls 0.2757a 0.3127a 0.0643b -0.0545 0.0973a 0.1217a 0.2818a 0.2798a

Table 3: Common news, volume and volatility. Panel regression estimates with �xed e�ect (FE) and
pooling (PO) of the parameter β in (14). �e dependent variable are logarithm of the hourly trading
volume and RV for six FX rates with di�erent base currency EUR, GBP, USD and JPY. �e regressors are
the dummy variable for the co-jump (CJ) on the base currency (baseline speci�cation), and a number of
controls: the average relative bid-ask spread (BA), and hourly and day-of-the-week dummies and an AR(1)
term. �e superscripts a, b and c indicate signi�cance at 1%, 5% and 10% signi�cance level respectively.

4.2 FX Illiquidity

Proposition 2 in Section 2 provides a closed-form expression for illiquidity in the spirit of Amihud

(2002), i.e. the ratio between volatility and trading volume. �e empirical prediction is that illiq-

uidity decreases with market depth and the number of active traders. It is di�cult to accurately

measure these quantities. However, the visual inspection of Figure 7 representing the intraday
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development of our EURUSD Amihud measure suggests that illiquidity tends to decrease when

international �nancial centers are open, that is, when the FX market is deep and populated by ac-

tive traders. More precisely, it is discernible that FX illiquidity abruptly decreases at the opening

of the European markets and it is minimal when both the European and the American markets

are jointly open. A�er 8PM the illiquidity grows again and it is maximal during the night hours.

A consistent pa�ern also holds for USDJPY (the right-hand side �gure 7): market illiquidity re-

duces at the opening of the main �nancial markets Tokyo, London and New York and it sensibly

increases again a�er 4PM. To shed further light on the measurement ability of our illiquidity
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Figure 7: Hourly Averages of FX Amihud measures. In Panel a) USDEUR, in Panel b) USDJPY.

indicator, we perform various regressions similar to those shown in Table 1 and in Table 2. First,

we regress changes in our daily illiquidity indicator on daily changes of bid-ask spreads. �e

results are exhibited in column (3) of in Table 1. Second, we regress monthly changes of our

illiquidity indicator on a comprehensive measure of FX illiquidity proposed in Karnaukh et al.,

2015 that proved to be highly correlated with precise high-frequency (intraday) data from Elec-

tronic Broking Services, which is the major interdealer trading platform for many currencies.

�e results are presented in column (3) of in Table 2. In both regressions, we include control

variables.18 Overall, we �nd that our illiquidity measure in the spirit of the Amihud indicator

increases with other well-accepted measures of FX illiquidity.

So far, we have analyzed FX illiquidity on a global scale. Now, we ask the question whether

our FX illiquidity measure is highly correlated with other illiquidity proxies in the FX interdealer

segment. To do this, we obtain intraday data from Electronic Broking Services (EBS), the leading
18In addition to daily and monthly time intervals, we have performed the same regressions with weekly data and

obtained consistent results.
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platform for spot FX interdealer trading for various FX rates including the EURUSD. For the entire

2016, we access the depth of book at ten levels on both sides (bid and o�er quotes) snapped every

100 milliseconds, the exact identi�cation whether the deal is given or paid, transaction prices and

amounts. We focus on EURUSD, which is primarily traded on this interdealer trading platform.19

In the same spirit of Hasbrouck (2009), we analyze correlations between illiquidity measures.

More speci�cally, we compute the following proxies: quoted spread (i.e. ask minus bid quotes),

relative quoted spread (i.e. quoted spread divided by midquote), e�ective cost (i.e. the absolute

value of the di�erence between transaction price and midquote), traditional Amihud measure

(i.e. absolute return over trading volume), cost estimates implied by the Roll model (Roll, 1984),

order �ow price impacts (i.e. at �ve-minute intervals and trade-by-trade).

At BASt Rel-BASt ECt Rt γ1 γ2 γ3 Daily-At

Pearson correlation
At 1.0000 0.5176 0.5628 0.8958 0.9000 0.6220 0.6945 0.7393 0.8527
BASt 0.5176 1.0000 0.9890 0.6092 0.5474 0.2520 0.2484 0.4524 0.4175
Rel-BASt 0.5628 0.9890 1.0000 0.6534 0.5933 0.2917 0.2965 0.4995 0.4685
ECt 0.8958 0.6092 0.6534 1.0000 0.9329 0.5332 0.5426 0.6718 0.8132
Rt 0.9000 0.5474 0.5933 0.9329 1.0000 0.5741 0.6329 0.5883 0.8995
γ1 0.6220 0.2520 0.2917 0.5332 0.5741 1.0000 0.7936 0.4199 0.6189
γ2 0.6945 0.2484 0.2965 0.5426 0.6329 0.7936 1.0000 0.4363 0.6331
γ3 0.7393 0.4524 0.4995 0.6718 0.5883 0.4199 0.4363 1.0000 0.5234
Daily-At 0.8527 0.4175 0.4685 0.8132 0.8995 0.6189 0.6331 0.5234 1.0000
Spearman rank correlation
At 1.0000 0.8867 0.8617 0.8103 0.8266 0.3182 0.2208 0.2722 0.9403
BASt 0.8867 1.0000 0.9831 0.8938 0.8274 0.2225 0.1256 0.3557 0.8190
Rel-BASt 0.8617 0.9831 1.0000 0.8995 0.8343 0.2175 0.1066 0.3552 0.7988
ECt 0.8103 0.8938 0.8995 1.0000 0.9253 0.2202 0.0690 0.4219 0.8174
Rt 0.8266 0.8274 0.8343 0.9253 1.0000 0.2727 0.1327 0.3633 0.8746
γ1 0.3182 0.2225 0.2175 0.2202 0.2727 1.0000 0.7452 0.1628 0.3481
γ2 0.2208 0.1256 0.1066 0.0690 0.1327 0.7452 1.0000 0.1032 0.2122
γ3 0.2722 0.3557 0.3552 0.4219 0.3633 0.1628 0.1032 1.0000 0.2613
Daily-At 0.9403 0.8190 0.7988 0.8174 0.8746 0.3481 0.2122 0.2613 1.0000

Table 4: Correlation matrix for illiquidity measures on a daily basis. Sample: EBS data from 01-Jan-2016
to 17-Jul-2016. At : High-frequency Amihud measure, BASt : Bid-ask spread, Rel-BASt : Relative bid-ask
spread, ECt : e�ective cost, Rt : Roll measure, γ1: 5min price impact coe�cient,γ2: order �ow price impact
coe�cient,γ3: trade-by-trade price impact coe�cient, Daily-At ; classic Amihud measure computed with
the absolute value of daily log-return.

Table 4 delivers two main messages: First, it clearly shows that our FX illiquidity measure is

19�e other main interdealer platform is �omson Reuters. Some FX rates e.g. involving the British pound are
mainly traded on it.
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highly correlated with intraday illiquidity proxies based on EBS data, in particular the e�ective

cost and order �ow price impact. Second, it is also highly correlated with the traditional Amihud

indicator suggesting that even approximating volatility with daily absolute returns (as in the tra-

ditional Amihud indicator) rather than gauging it with more accurate high-frequency measures

realized power variation, as in our proxy), one can obtain a fairly accurate proxy of FX illiquidity.

Spearman rank correlations con�rm these results. Overall, we �nd that our illiquidity measure

in the spirit of the Amihud indicator increases with high-frequency and well-accepted measures

of FX illiquidity.

4.2.1 A natural experiment

Another method to assess the validity of our illiquidity measure is by means of a meaningful

natural experiment. �rough the lens of the theory developed in Section 2, the announcement

of the cap removal of the Swiss franc by the Swiss National Bank (SNB) on January 15, 2015

represents an ideal natural experiment. Indeed, starting from September 6, 2011, the SNB set

a minimum exchange rate of 1.20 francs to the euro (capping franc’s appreciation) saying ”the

value of the franc is a threat to the economy”, and that it was ”prepared to buy foreign currency

in unlimited quantities”’. �is means that the SNB had a declared binding cap on the transaction

price that was removed on January 15, 2015.20

In terms of our model, the SNB can be considered as the (J+1)-th trader. �e SNB intervention

strategy of selling CHF for EUR in potentially unlimited quantities is implemented if the average

of the reservation prices of the J traders falls below the cap, that is if 1
J

∑J
j=1 p

∗
i,j < log(1.2). Indeed,

despite the cap on the transaction price, the reservation prices of each individual trader might

well be below the 1.20 threshold. For instance, a trader with a reservation price of 1.15, which

observes a market price above 1.20, will sell EUR for CHF expecting the cap to be removed at some

point in the future.21 In other words, SNB buys (sells) foreign (domestic) currency to guarantee

20�e SNB announcement was mostly unanticipated by market participants, see e.g. Jermann, 2017 and Mirkov
et al., 2016

21�e �omson Reuters survey indicates dispersion of the beliefs of professional market participants around 1.20
along most of the capping period.
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that the transaction price is above the threshold, that is

pi =
1

J + 1

J+1∑
j=1

p∗i,j ≥ log(1.2), (15)

where p∗i,J+1 = (log(1.2) − 1
J

∑J
j=1 p

∗
i,j)I(

∑J
j=1 p

∗
i,j < 1.2), where I(·) is the indicator function. �e

enforcement of the capping regime by SNB generates extra trading volume. In particular, the

trading volume is

νi =
ξ x |y

2

J∑
j=1
|ψi,j − ψ̄i,j | +v

SNB
i , (16)

where vSNB
i is the trading volume generated by the central bank to maintain the cap on the FX

rate. Hence, the model prescribes a low volatility of the observed returns due to the implicit

constraint given by the capping and a larger volume due to FX interventions. �is implies that

the Amihud illiquidity index is lower (higher) before (a�er) the removal of the FX capping regime.

Figure 8 provides graphical support for the prescriptions of the theoretical model. Indeed,

volatility (realized power variation) is relatively low until January 15, 2015, it spikes on the day

of the announcement of the un-capping and it remains high until the end of 2016. �e trading

volume has the opposite behavior, being relatively high during the capping period and reverting

to a lower value a�er January 15, 2015. Finally, our FX Amihud measure displays a clear upward

shi� a�er the removal of the Swiss franc cap. To provide a statistical support, Table 5 reports

the sample average of the main market variables before and a�er the cap removal. A�er the an-

nouncement, FX volatility signi�cantly increases, trading volume decreases, and liquidity dries

up (even discarding the announcement day). Furthermore, the average trading volume size sig-

ni�cantly decreases, suggesting a reduction in market depth. �e lack of statistical signi�cance

in the change of the dispersion (standard deviations and high-low ranges) in �omson Reuters

survey of forecasts before and a�er the announcement suggests that market participants do not

disagree more (less) a�er (before) the currency cap removal. �is also suggests that the liquid-

ity dry-up a�er the cap removal cannot be explained by a stronger consensus regarding agents’

reservation prices. All in all, the analysis of this natural experiment corroborates the empirical

predictions of the theory, that is, the central bank’s enforcement of its reservation price leads to

lower volatility, larger trading volume, and higher liquidity. By abandoning this regime, opposite
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Figure 8: FX Rate (Figure a), Realized Power Variation (RPV, b), Trading Volume (c) and FX Amihud
measure (d) of the EUR/CHF currency pair from 2012 to 2016 with the announcement of the cap removal
of the Swiss franc by SNB on January 15, 2015 (red-dashed line).

pa�erns arise.

Before A�er Test p-value
RPV 4.548 9.7531 -12.71 0.000
RV 0.0825 0.3508 -5.842 0.000
VOL 1148.75 682.80 14.34 0.000
AMIHUD 0.4255 1.5002 -24.21 0.000
SIZE 264.84 207.65 27.55 0.000
DIS1 0.0146 0.0166 -0.1704 0.865
DIS2 0.0898 0.1015 -0.1252 0.908

Table 5: Sample averages of realized power variation (RPV), realized volatility (RV), trading volume (Vol-
ume), FX illiquidity measure (Amihud), and average trade size (Size) before (from Nov 1, 2011 to Jan 14,
2015) and a�er (from Jan 16, 2015 to Nov 30, 2016) announcement of un-capping (on Jan 15, 2015) - daily
frequency. To proxy disagreement, we compute the average of the standard deviations (DIS1) and high-
low range (DIS2) of monthly �omson Reuters survey of forecasts on the EUR-CHF rate. �e variables
have been rescaled. Table also reports a test for the equality of the averages in the two sub-samples,
z = m1−m2√

v1/n1+v2/n2
, and associated p-values (one-tail) calculated accounting for the auto-correlation in the

data.
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4.3 Commonalities

Proposition 3 in Section 2 is about commonalities in FX trading volume, volatility and liquidity

arising from the no-arbitrage condition. �e purpose of this subsection is to empirically assess

this idea. More precisely, we proceed in two steps: First, we analyze commonalities by means

of three methods: (i) the factor analysis, (ii) the construction of a FX connectedness index, and

(iii) the regression analysis. Second, we study the pricing implications stemming from arbitrage

deviations and commonalities.

4.3.1 Factor Analysis

By means of the triangular no-arbitrage relation, Section 2.2 provides a theoretical underpinning

that trading volume across FX rates are driven by common factors, which are function of the

aggregated traders’ speci�c components on di�erent currency pairs. Notice that the FX-rate

triangular condition can be extended to more than three FX rates. Actually, it is generalizable

to any numbers of FX rates tied by triangular relationships. For instance, with four currencies,

x , w , z, and y, the log-price is p
x |y
i = px |zi + pz |wi + p

w |y
i , and the synthetic volume becomes

ν̃
x |y
i =

ξ x |y

2
∑J

j=1 |ψ
x |z
i,j − ψ̄

x |z
i +ψ

z |w
i,j − ψ̄

z |w
i +ψ

w |y
i,j − ψ̄

w |y
i |. �is provides support for the existence

of a factor structure in cross sections of FX rates of any order.

To the purpose of studying the commonality in volume, volatility and liquidity across multiple

FX rates, we follow the common approach in the literature (e.g. Hasbrouck and Seppi, 2001) and

apply the principal component analysis (PCA) to the panel of 29 FX rates introduced in Section

3.1. �e goal is to identify a common factor structure across the volume, volatility, and illiquidity

series of the FX rates and to study the exposure of each rate to it. Table 6 shows of these quantities

for each individual FX rate load positively on the �rst principal component in all cases. Notably,

the �rst component explains a large portion of the overall variation of volume, volatility and

illiquidity measures of the panel of FX rates, being above 50% in many cases. Moreover, the

weight associated with the volume and illiquidity measure of USDEUR is the highest signaling

the leading role of the information on the USDEUR rate in determining the global FX volume.

Instead, the loading on RPV for EURDKK is the smallest across all currencies, signaling that

the volatility on EURDKK is strongly in�uenced by the pegging of DKK to EUR. �ese �ndings
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Hourly Hourly Seasonally Adjusted Daily
Volume RPV Amihud Volume RPV Amihud Volume RPV Amihud

AUDJPY 0.1555 0.1884 0.1526 0.2031 0.2143 0.1963 0.1830 0.1986 0.2230
AUDNZD 0.1288 0.1461 0.1418 0.1539 0.1774 0.1559 0.1781 0.1895 0.2195
CADJPY 0.1327 0.1966 0.1045 0.1528 0.2019 0.1133 0.1387 0.1884 0.1153
EURAUD 0.1854 0.1992 0.1852 0.1934 0.2144 0.1823 0.1968 0.2083 0.2277
EURCAD 0.1829 0.2138 0.1709 0.1711 0.2180 0.1627 0.1873 0.2111 0.1835
EURCHF 0.2173 0.1520 0.2065 0.1997 0.1542 0.1852 0.1677 0.1510 0.1871
EURDKK 0.1841 0.0863 0.1819 0.0910 0.0495 0.0879 0.1500 0.0623 0.0111
EURGBP 0.2285 0.2128 0.2419 0.2284 0.2139 0.2355 0.2155 0.2069 0.2508
EURJPY 0.1971 0.1954 0.2110 0.2112 0.1959 0.2367 0.1617 0.1677 0.2401
EURNOK 0.2142 0.1472 0.2217 0.1805 0.1203 0.1729 0.2118 0.1472 0.0612
EURSEK 0.2131 0.1393 0.2179 0.1764 0.1001 0.1571 0.2041 0.1314 0.0535
GBPAUD 0.1599 0.2034 0.1592 0.1672 0.2170 0.1821 0.1865 0.2163 0.2165
GBPCAD 0.1279 0.2045 0.1098 0.1284 0.2047 0.1398 0.1603 0.2067 0.1729
GBPCHF 0.1692 0.2148 0.1595 0.1488 0.2163 0.1648 0.1664 0.2094 0.1882
GBPJPY 0.1823 0.1984 0.1690 0.1754 0.1980 0.1724 0.1463 0.1774 0.1789
USDAUD 0.1839 0.1965 0.1880 0.2256 0.2129 0.2361 0.1951 0.2115 0.2417
USDCAD 0.2070 0.2066 0.2099 0.2144 0.2049 0.2158 0.2106 0.2079 0.2538
USDCHF 0.2236 0.2140 0.2227 0.2301 0.2131 0.2321 0.2184 0.2014 0.2516
USDDKK 0.1573 0.2127 0.1499 0.0979 0.2129 0.1089 0.1394 0.1979 0.1035
USDEUR 0.2320 0.2142 0.2482 0.2461 0.2155 0.2633 0.2011 0.1966 0.2690
USDGBP 0.2291 0.2131 0.2363 0.2384 0.2095 0.2575 0.2235 0.2050 0.2733
USDHKD 0.1555 0.0673 0.1650 0.1266 0.0917 0.1502 0.1515 0.1244 0.0891
USDJPY 0.1748 0.1676 0.1739 0.2263 0.1701 0.2116 0.1912 0.1487 0.2067
USDMXP 0.1459 0.1656 0.1442 0.1881 0.1538 0.1850 0.2211 0.1841 0.1138
USDNOK 0.1909 0.2026 0.1892 0.1518 0.1852 0.1484 0.1611 0.2014 0.0920
USDNZD 0.1669 0.1914 0.1606 0.1908 0.1966 0.1922 0.2003 0.2041 0.2365
USDSEK 0.1939 0.1974 0.1887 0.1585 0.1755 0.1457 0.1737 0.1861 0.0842
USDSGD 0.1528 0.1633 0.1403 0.1887 0.1677 0.1580 0.1671 0.1846 0.0927
USDZAR 0.2179 0.1681 0.2246 0.1989 0.1313 0.1915 0.2233 0.1705 0.0953
EXPL 0.5514 0.6135 0.4519 0.3440 0.5236 0.3066 0.4756 0.6494 0.3771

Table 6: PCA Analysis. �e table reports the loadings for each currency pair for trading volume (Volume),
volatility (realized power variation, RPV) and illiquidity (Amihud) to the �rst principal component. �e
bo�om line reports the percentage of explained variance of the �rst principal component.

remain qualitatively the same for daily and hourly (seasonally un- or adjusted) time series.

Another way to analyze commonalities is by studying the dynamic interplay between the FX

rates across currencies by means of the total connectedness index of Diebold and Yilmaz (2014).22

�e TCI is de�ned as

TCI =
1
N

N∑
i,j=1i,j

d̃i,j , (17)

22See also Greenwood-Nimmo et al. (2016) for an application of the connecteness measure in the context of
returns and option-implied moments of FX rates.
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whereN denotes the number of variables in the system, and d̃i,j is the i, j entry of the standardized

connectedness matrix D̃. �e matrix D̃ is de�ned as

d̃i,j =
di,j∑N
j=1 di,j

, (18)

with

di,j =
σ−1
jj

∑H
h=0(eiAhΣej)

2∑H
h=0(e

′
iAhΣA

′
h
ei)
, (19)

where Ah is the impulse-response matrix at horizon h associated with a VAR(p) model, Σ is the

covariance matrix of the errors, and ei , ej are N × 1 selection vectors. By construction,
∑N

j=1 d̃i,j =

1 and
∑N

i,j=1 d̃i,j = N . Equation (19) de�nes the generalized forecast error decomposition, as

introduced by Pesaran and Shin (1998). In other words, the TCI measures the average portion

over N variables of the forecast error variation of variable i coming from shocks arising from

the other j = 1, . . . ,N − 1 variables of the system. Although less standard in the literature

on liquidity commonalities, the TCI approach provides an informative characterization of the

connectedness of a system that is richer than the one obtained with a simple linear correlation

coe�cient. Indeed, the TCI combines information coming from both the contemporaneous and

the dynamic dependence structure of the system trough Σ and Ah , respectively. Moreover, by

estimating the VAR model over rolling windows, it is possible to characterize the evolution of

the dependence structure between two or more variables by looking at the variations of the TCI

over time.

As showed in Table 7, the connectedness analysis delivers two main �ndings: First, the overall

level of connectedness of volume and volatility is very high and constant over time, being close

to 90% for both volatility and volume at hourly and daily level. �e connectedness remains very

high also when volume and RPV are �ltered from intradaily seasonality, being around 70%-80%.

�is picture corroborates the previous �ndings obtained from the Factor Analysis, that is, there

is a strong commonality across FX volumes and volatilities. Second, the comparison between the

most and least liquid FX rates indicates that a stronger connectedness of volume and volatility

for the former set of currencies. Indeed, the connectedness on the most liquid FX rates is above

85% and it remains relatively high for hourly seasonally adjusted series. On the other hand, the

connectedness level sensibly reduces when focusing on the least liquid FX rates. �is result is

32



Hourly Hourly Seasonally Adjusted Daily
Full 11/14 12/15 13/16 Full 11/14 12/15 13/16 Full 11/14 12/15 13/16

All FX rates
Volume 0.884 0.880 0.885 0.890 0.726 0.719 0.730 0.731 0.891 0.889 0.891 0.898
RPV 0.910 0.907 0.910 0.916 0.846 0.844 0.850 0.856 0.921 0.920 0.928 0.930

10 Most Liquid
Volume 0.875 0.873 0.883 0.880 0.709 0.702 0.714 0.722 0.862 0.864 0.863 0.870
RPV 0.893 0.890 0.893 0.904 0.814 0.815 0.818 0.838 0.919 0.920 0.922 0.935
10 Least Liquid
Volume 0.621 0.607 0.634 0.649 0.275 0.270 0.284 0.289 0.623 0.608 0.617 0.659
RPV 0.808 0.810 0.821 0.819 0.718 0.710 0.728 0.732 0.846 0.829 0.861 0.873

Table 7: Connectedness. �e table reports the value of the connectedness index of Diebold and Yilmaz
(2014) of trading volume (Volume) and volatility (in terms of realized power variation, RPV) for di�erent
sampling periods (Full sample, 2011/2014, 2012/2015, and 2013/2016) and for di�erent sets of FX rates. “10
Most Liquid” and “10 Least Liquid” refer to the ten most and least liquid FX rates in terms of total trading
volume.

fully consistent the adage that ”liquidity begets liquidity” (e.g. Foucault et al., 2013), in the sense

that higher liquidity goes with stronger commonality. It is also consistent with the Proposition

3 in Section 2 in which FX rates are connected by arbitrage trading volume and this connection

is stronger for liquid currencies (captured by the term ξ x |y in (10)). �is result squares well with

the idea that illiquid currency pairs are less (more) exposed to the common (speci�c) FX-factors

as it emerges from the magnitude of the loadings of the �rst principal component in Table 6. In

sum, liquid currencies appear to have stronger cross-currency commonalities than illiquid ones.

4.3.2 Measuring Commonalities

Common measures of liquidity commonalities are statistical measures such as R2 or estimated

slope coe�cient when regressing liquidity of an asset on market liquidity (e.g. Chordia et al.,

2000). Following the same reasoning but to be consistent with the arbitrage framework theorized

in Section 2.2, we measure the strength of the pairwise commonality in volume between x |y, x |z

and z |y through the following reduced-form model,

log(νx |yt ) = β0 + β1 log
(
νx |zt + ν

z |y
t

)
+ εt , t = 1, . . . ,T (20)

where νx |yt , νx |zt and νz |yt are the log-volume on period t on the FX rates x |y, x |z and z |y, respec-

tively. In this regression, β0 re�ects the di�erential in the resiliency levels in the three markets,
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while β1 measures the magnitude of commonality in the volume of the three FX rates. �e MDH

theory outlined in Section 3 prescribes that β1 > 0. �e term εt can also be interpreted as the

deviation from the long-run equilibrium between FX volume. Table 8 reports the estimates of

regression (20) for the EUR/USD rate, where the aggregate volume combining νx |zt and νz |yt (syn-

thetic volume) supports the triangular arbitrage with CHF, GBP, DKK, JPY, AUD, CAD, NOK,

SEK.23

Hourly Daily Daily (interacted)
βH0 βH1 R2

H βD0 βD1 R2
D βi0 βi1 βi2 R2

i

Volume
CHF 6.2791a 0.7861a 0.8068 9.0985a 0.6973a 0.5305 9.2331a 0.6908a 0.0246 0.5329
GBP 3.8371a 0.8625a 0.8195 7.8218a 0.7209a 0.4134 8.2372a 0.6966a 0.2057a 0.4341
DKK 15.592a 0.2962a 0.5526 16.073a 0.4452a 0.3751 16.248a 0.4293a 0.2755a 0.4054
JPY 2.8344a 0.8799a 0.4632 15.7280a 0.3963a 0.2099 17.185a 0.3277a 0.3040a 0.2467
AUD 0.7486a 1.0096a 0.5051 7.1182a 0.7599a 0.5789 7.6327a 0.7304a 0.1926a 0.6189
CAD 5.6124a 0.7936a 0.7248 10.634a 0.6176a 0.3875 11.372a 0.5724a 0.3874a 0.4756
NOK 13.577a 0.4635a 0.6739 14.887a 0.4782a 0.2482 14.891a 0.4781a -0.0014 0.2482
SEK 13.388a 0.4700a 0.6778 14.220a 0.5051a 0.2580 14.226a 0.5050a -0.0029 0.2581
RPV
CHF -0.9108a 0.9189a 0.7752 -0.9071a 0.7412a 0.7091 -0.9387a 0.7482a -0.8456a 0.7130
GBP -0.9777a 0.9303a 0.7552 -0.7973a 0.8884a 0.6257 -1.0890a 0.9725a -8.0796a 0.6892
DKK 0.2941a 1.094a 0.9320 0.0646a 1.1223a 0.9620 0.1065a 1.1145a 1.0515b 0.9646
JPY -1.2987a 0.9156a 0.5717 -1.2604a 0.6790a 0.3995 -1.6528a 0.8527a -14.235a 0.5317
AUD -0.8686a 1.0431a 0.5542 -1.0562a 0.9334a 0.6033 -1.3224a 1.0314a -8.0224a 0.7045
CAD -0.7850a 0.9968a 0.7238 -0.7546a 0.9889a 0.6680 -1.1531a 1.0427a -9.3480a 0.7634
NOK -1.7326a 0.8126a 0.5366 -1.0991a 0.8241a 0.4756 -0.9015a 0.7945a 3.7473a 0.4988
SEK -1.3851a 0.8718a 0.5678 -0.7150a 1.0555a 0.5693 -0.5284a 1.0459a 3.2424c 0.5845
Amihud
CHF -14.066a 0.5552a 0.6956 -14.4250a 0.5417a 0.7234 -14.0150a 0.5570a 0.0345c 0.7277
GBP -12.749a 0.5985a 0.7241 -8.7892a 0.7538a 0.7489 -9.9900a 0.7117a -0.1495a 0.7584
DKK -24.583a 0.1506a 0.2566 -23.235a 0.2086a 0.2375 -23.244a 0.2083a -0.0069 0.2375
JPY -8.8037a 0.7518a 0.5280 -11.483a 0.6518a 0.5832 -12.621a 0.6167a -0.2805a 0.6191
AUD -14.852a 0.5419a 0.3830 -13.826a 0.5931a 0.5401 -15.229a 0.5418a -0.1812a 0.5721
CAD -18.857a 0.3836a 0.3733 -13.235a 0.6319a 0.5111 -14.574a 0.5829a -0.2284a 0.5382
NOK -22.516a 0.2321a 0.4465 -17.387a 0.4554a 0.3539 -18.241a 0.4210a -0.0485b 0.3602
SEK -22.151a 0.2452a 0.4510 -19.111a 0.3772a 0.2138 -20.320a 0.3295a -0.0885b 0.2304

Table 8: Commonalities in volume, volatility (realized power variation, RPV) and illiquidity (Amihud
index, Amihud). For each currency, the table reports the intercept, slope and R2 of the regression of the
log volume/volatility/Amihud of EURUSD on the log of the sum of volume/volatility/Amihud index on
the FX rate of the currency indicated in the �rst column against USD and EUR. �e superscripts a, b and
c indicate signi�cance at 1%, 5% and 10% signi�cance level, respectively.

23Besides these 8 FX rates providing triangular constructions with the EUR/USD rate, in our sample the following
synthetic FX rates exist: (a) for the USDGBP, via AUD, CAD, CHF, EUR, and JPY; (b) for USDAUD, via EUR, GBP,
JPY, and NZD; and (c) for EURCHF, via GBP and USD. We have analyzed all of them obtaining consistent results.
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Overall, it emerges that regression (20) is able to explain a large portion of variability of

νEUR/USD , and this can be a�ributed to the portions of common information inψUSD/·
j andψ EUR/·

j ,

which determine the synthetic volume in (35). At the hourly level, the estimated parameter β0

re�ects the average liquidity di�erential across currencies, with DKK, SEK and NOK being con-

sistently less liquid than JPY, AUD and GBP. Notably, the parameter β1 is positive in all cases and

it is closer to 1 for the most liquid rates corroborating the idea that liquidity begets commonality.

As expected, higher β1 are associated with higher R2. When removing the intradaily seasonality

in volume or aggregating at the daily level, the R2 slightly decreases but the result is qualita-

tively the same as for the raw hourly volume. �e residuals display signi�cant autocorrelation,

suggesting that volume imbalances across FX markets are stationary but persistent. �ese long-

lasting disequilibria in volume might be explained by the fragmented OTC structure of the FX

market and prolonged time to incorporate agents’ heterogeneous priors and (public and private)

information into prices, as for conditional volatility (Engle et al., 1990).

When replacing volume with volatility (RPV) in (20), we note that also volatility displays a

large degree of commonality across currencies. �e R2 is generally very well above 50% at both

hourly and daily level. Interestingly, the R2 and the slope coe�cient of DKK are almost 1 con-

sistent with the Danish Central Bank policy to keep EUR/DKK within a very narrow corridor

(0.133-0.1346), thus the Cov(pUSD/DKK ,pUSD/EUR) ≈ 1. Consistent with the theory, the Danish

central bank’s intervention to �x the EUR/DKK rate reduces the commonality in volume and

liquidity with the other currencies. Not surprisingly, the Amihud illiquidity measure, which

combines information on both volatility and volume, also displays an analogous amount of com-

monality across currencies, being the highest for the most liquid ones.

�e theory outlined in Section 2.2 suggests that the commonalities in trading volume across

FX rates are driven by the level of correlation among the FX rates, where the synthetic volume is

a function of the correlation of the aggregated traders’ speci�c components on di�erent currency

pairs, see the the right-hand side of (35) in Appendix A. In other words, our theory predicts that

the synthetic volume reveals the strength of the correlation across FX rates. To test this empirical

prediction, we consider the following regression

log(ν̃x |yt ) = γ0 + γ1 log(ζt ) + γ2ν̃
x |y
t−1 + εt , t = 1, . . . ,T , (21)
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where (log) ν̃x |yt is the synthetic volume as measured by the ��ed volume in regression (20),

while ζt = log(1 + |ρt |) and ρt is the realized correlation between x |z and z |y. Hence, the term

ζt measures the strength of the correlation in the FX rates x |z and z |y, and the parameter γ1 is

expected to be positive. Table 9 contains the estimates of γ1 based on regression (21) and on the

extended version which controls for liquidity as measured by the bid-ask spreads on x |z and z |y.

At hourly frequency, the estimates ofγ1 are positive and highly signi�cant in most cases, with the

Hourly Daily Weekly
γ0 γ1 γ0 γ1 γ0 γ1

Baseline Regression
CHF 4.2444 0.2141a 13.9536 0.1697a 8.4427 0.0993c

GBP 3.7079 0.2310a 18.2764 0.0897c 12.1883 0.0485
DKK 6.8630 -0.1447a 18.5609 -0.1159 11.2898 0.0615
JPY 6.1447 0.2810a 10.9029 0.1511a 7.0136 0.0331
AUD 6.8131 0.0642a 12.5726 0.0609 8.4234 -0.0696
CAD 4.3665 -0.0764a 22.5847 -0.0203 18.2935 0.0079
NOK 6.0960 0.7085a 17.2974 0.4519a 17.6356 0.1196c

SEK 5.6549 0.5923a 18.6241 0.1409a 15.6949 -0.0160
Control for Liquidity
CHF 5.3883 0.3172a 16.6392 0.4082a 12.1837 0.2538b

GBP 4.8816 0.2439a 18.7933 0.1463a 12.9884 0.0658
DKK 7.0838 -0.1499a 19.4777 -0.1202a 13.8504 0.0317
JPY 7.1983 0.1077a 14.6026 -0.0455 10.9355 -0.0353
AUD 7.6219 0.1614a 17.4960 0.2028a 16.9214 0.0394
CAD 4.5109 -0.0853a 22.7906 0.0288 19.6981 0.0878
NOK 8.0024 0.7449a 17.3807 0.4529a 17.6188 0.1140c

SEK 8.2093 0.6576a 18.9913 0.1571a 16.0763 -0.0129

Table 9: Synthetic volume and correlation. For each currency, the table reports the intercept and the slope
of the regression of the log synthetic volume of EURUSD on the log of the correlation of the FX rates with
USD and EUR.

notable exception of DKK. Again, the results suggest that the intervention of the central bank to

peg DKK to EUR prevents the trading activity on EUR/DKK and DKK/USD from fully revealing

the correlation structure of the investors’ beliefs on EUR and USD. When aggregating over days

and weeks, we still obtain generally positive estimates of γ1 but they are o�en not signi�cantly

di�erent from zero.
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4.3.3 Commonality and Pricing Implications

One of our previous results is that liquidity begets liquidity across currencies. As the last step of

our study, we address the question whether liquidity begets price e�ciency as well. �e rationale

of this relationship is again our third theoretical proposition implying that arbitrage keeping FX

rates tied to equilibrium relations passes through the trading activity (volume), which in turn it

is sustained by liquidity. To do this, we build a simple measure of pricing errors to investigate

whether high liquidity is associated with smaller mispricing errors. Speci�cally, pei,t is the hourly

cumulative no-arbitrage error at time time t for the i-th synthetic relation de�ned as

pei,t =
60∑
l=1
|r
x |y
l ,t
− r̃

zni
l ,t
|,

where rx |y
l ,t

is the direct one-minute midquote log-return on the FX rate between the currency x

and y, while r̃z
l ,t

is the synthetic one-minute log-return on the FX rate x |y using the currency zni .

Empirically, we test the price-liquidity relation in two ways: First, by looking at the systematic

relationship between arbitrage deviations and illiquidity; Second, by inspecting whether more

liquidity facilitates the price adjustment process.

To analyze the systematic price-liquidity relationships, we apply two methods: First, we ex-

tend the previous commonality analysis in (20) by interacting synthetic volume and pricing error

as follows:

log(νx |yt ) = β0 + β1 log
(
νx |zt + ν

z |y
t

)
+ β2 log

(
νx |zt + ν

z |y
t

)
pei,t + εt , t = 1, . . . ,T (22)

�e results are showed on the right-hand side of Table 8. As predicted by our theory, we �nd a

positive β2 indicating that arbitrage deviations a�ract more trading volume to reestablish price

equilibrium. We extend the analysis to volatility and illiquidity, for which we do not have clear

empirical predictions. In both cases, we �nd a negative β2 suggesting that the departure from

arbitrage conditions goes with divergent liquidity and volatility pa�erns across currencies, con-

sistent with the idea that illiquidity hinders the restoration of equilibrium prices.

�e second method to study the systematic price-liquidity relationship is to compute the

monthly average mispricing errors and synthetic illiquidity for each FX rate allowing for a tri-
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angular FX construction. For instance, for EUR/USD, EUR/GBP, and GBP/USD we calculate the

average deviations between direct (EUR/USD) and synthetic rate (via EUR/GBP, and GBP/USD)

and the average Amihud measures of the two FX rates to operate triangular arbitrage (EUR/GBP

and GBP/USD).
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Figure 9: Monthly cumulative mispricing (pex |yt ) against synthetic illiquidity, Ãx |y
t .

Figure 9 clearly shows a positive relationship between mispricing and illiquidity. Also, more

liquid currencies have steeper curves suggesting that the same amount of additional liquidity is

more e�ective in reducing arbitrage deviations in liquid currencies. We also carry out a statistical

analysis to validate these �ndings and consider the following regression

pe
x |y
t = α + δÃ

x |y
t + γ B̃ASt + εt , (23)

where ˜Amx |y
t denotes the synthetic illiquidity on the FX rate x |y computed with the same currency

used to calculate pe
x |y
t . We expect the parameter δ to be positive and signi�cant, signaling a

positive relation between illiquidity and pricing errors. Analogously, the synthetic bid-ask spread,

denoted as B̃AS , is also computed in a similar way and it is added to the regression to control

for deviations from the pricing equilibrium due another dimension of illiquidity that is the bid-

ask spread. �e results of regression (23) are reported Table 10, and the parameter estimates

validate the �ndings observed in the sca�er plots in Figure 9. In particular, by regressing monthly

mispricing on (synthetic) FX illiquidity, we �nd compelling evidence that liquidity begets price
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e�ciency, i.e. limiting arbitrage deviations. �is holds true also when controlling for bid-ask

spread di�erentials, although the signi�cance is reduced for EURUSD when combining with the

least liquid currencies (e.g. NOK and SEK).

EURUSD EURCHF

CHF GBP DKK JPY AUD CAD NOK SEK USD GBP
α 0.36a 0.50a 0.49a 0.62a 0.51a 0.26a 0.51a 0.72a 0.25 2.51a
δ 54.77a 65.12a 1.01a 34.06b 21.54a 17.37a 16.15a 9.07a 357.9a -22.13a

R2 0.54 0.32 0.14 0.11 0.34 0.40 0.36 0.13 0.65 0.49

α -0.30a 0.04 0.59a 0.14b 0.13 -0.27b -0.10 -0.18b -2.48a -0.78c
δ 23.21a 11.15 1.27a 30.77a 10.18b 2.95 2.92 -1.52 227.7a 16.21a
γ 30.05a 31.25a -0.98 0.20a 14.55a 26.27a 2.97a 3.51a 124.0a 93.64a

R2 0.88 0.64 0.18 0.47 0.46 0.69 0.76 0.71 0.82 0.69

Table 10: Mispricing vs. Liquidity regression estimation. Table reports the estimates of the linear regres-
sion (23) for the FX rates EURUSD and EURCHF, when the triangular no-arbitrage condition is computed
with of a third currency, that is CHF, GBP DKK, JPY, AUD, NOK and SEK for EURUSD; USD and GBP for
EURCHF. �e sample size is N = 58 months. �e top (bo�om) panel reports the estimates when BAS is
excluded (included) among regressors in (23). �e superscripts a, b and c indicate signi�cance at 1%, 5%
and 10% signi�cance level respectively.

To study whether liquidity facilitates price adjustments, we bene�t again from the identi�ca-

tion of large price co-movements captured by the co-jumps. More speci�cally, we test whether

the chances of mispricing are higher for less liquid currencies in reaction to directional FX move-

ments measured by co-jumps. To carry out this test, we consider the following panel regression

with �xed e�ects

pei,t = αi + βV̄i,t (1 + ζ C Jt ) + θC Jt + δBAi,t + γhht + γwwt + εi,t , (24)

�e term V̄i,t is the aggregate or synthetic volume from the FX rates x |zni and zni |y. Our sample

consists of n = 10 currencies and allows us to consider I = 20 combinations of x , y and zni .24

�e relation between the average volume V̄i,t and the average no-arbitrage error pei,t is depicted

in Figure 10. �e �gure clearly displays a cross-sectional negative relation between the trading

volume on the FX rates and the no-arbitrage pricing error. In other words, the pricing errors

are higher for less liquid currencies, such as SEK and NOK. A notable exception is given by
24�e combinations are: USDAUD/EURAUD, USDSEK/EURSEK, USDNOK/EURNOK, USDCHF/EURCHF, USD-

CAD/EURCAD, USDJPY/EURJPY, USDGBP/EURGBP, USDDKK/EURDKK, USDAUD/GBPAUD, USDCAD/GBPCAD,
USDJPY/GBPJPY, USDCAD/JPYCAD, USDAUD/JPYAUD, EURCAD/GBPCAD, EURJPY/GBPJPY, EURCHF/GBPCHF,
EURCAD/JPYCAD, USDAUD/JPYAUD, GBPAUD/JPYAUD, GBPCAD/JPYCAD.
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Figure 10: Trading Volume and pricing errors. �e �gures show the sca�er of the average volume (x-axis)
versus the average triangular pricing error (y-axis) for 20 combination of currencies x , y and z. �e le�
panel reports the unconditional relation, while the right panel is conditional to the event of a co-jump on
the individual currencies, EUR, JPY, USD and GBP. �e line represents the least squares �t.

DKK, which again it can be explained by the �xed exchange rate policy. When conditioning on

the arrival of a large common news on the main individual currencies EUR, JPY, USD and GBP

(right panel), the average mispricing error on the y-axis increases relatively to the le� panel,

suggesting that big news arrivals prompt price adjustment processes on individual currencies

that can generate larger price dispersion and mispricing errors. However, the negative relation

between magnitude of the mispricing and trading volume is maintained.

Table 11 reports the parameter estimates of (24) based on the sample of I = 20 combination of

FX rates and for a sample ofT = 30720 hours (24× 1280 days). �e results con�rm our empirical

prediction, that is, a negative relation between mispricing errors and volume, which is robust to

the inclusion of the relative bid-ask spread as a control for transaction costs (where parameter

δ is found signi�cantly positive in all cases). As it also emerges from Figure 10, the co-jumps

events are associated with a signi�cant increase in the average level of mispricing (θ > 0), and

also with a signi�cantly negative slope of volume (ζ < 0). In sum, our results support the idea

that liquidity begets price e�ciency by reducing pricing errors, systematically and facilitating

the information processing.
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FE PO FE PO FE PO FE PO FE PO
Volume -0.018a -0.028a -0.024a -0.028a -0.024a -0.028a 0.004a -0.007a 0.004a -0.007a

Bid-Ask – – 0.142a 0.210a 0.141a 0.209a -0.002 0.073b -0.002 0.073b

CJ – – – – 0.001a 0.001a 0.001a 0.001a 0.001a 0.001a

CJ-Volume – – – – – – – – -0.041a -0.046a

Daily no no no no no no yes yes yes yes
Weekly no no no no no no yes yes yes yes
AR(1) no no no no no no yes yes yes yes

Table 11: No-arbitrage pricing errors and volume. Panel regression with �xed e�ect (FE) and pooling
(PO). �e dependent variable is the triangular pricing error accumulated at the hourly horizon for 20
combinations of FX rates. �e regressors are the hourly aggregate (synthetic) trading volume of the two
indirect FX rates (Volume) of the triangular arbitrage, the average relative bid-ask spread (Bid-Ask) of the
direct FX rate, the dummy variable of the co-jump index on its own (CJ) and interacted with (synthetic)
trading volume (CJ-Volume) as well as hourly and weekly dummies. �e superscripts a, b and c indicate
signi�cance at 1%, 5% and 10% signi�cance level respectively. �e standard errors are computed with the
White (1980) sandwich estimator for panel data models.

5 Conclusion

We provide a uni�ed model for asset prices, trading volume, and volatility. �e model is built in

continuous-time and allows for multi-asset framework. We apply it to currency markets in which

foreign exchange (FX) rates are tied by arbitrage conditions. Our model outlines new properties

of the FX market including the relationships between trading volume and volatility of direct and

arbitrage-related (or synthetic) FX rates. It also provides a theoretical foundation for common

pa�erns (commonality) of trading volume, volatility, and illiquidity across currencies and time,

and an intuitive closed-form solution for measuring illiquidity in the spirit of Amihud (2002).

We test the empirical predictions from our model using new and unique (intraday) data rep-

resentative of the global FX spot market. A distinguishing characteristic of our data set is that

it includes granular and intraday data on global FX trading volume. As predicted by our model,

three main empirical �ndings arise: First, the di�erence in market participants’ beliefs (disagree-

ment) is the common source of trading volume and volatility. Second, our FX Amihud measure is

e�ective in gauging FX illiquidity. �ird, we �nd strong commonalities in FX volume, volatility,

and illiquidity across time and FX rates. Consistent with the adage that ”liquidity begets liquid-

ity”, we �nd that more liquid currencies reveal stronger commonality in liquidity. Furthermore,

we �nd that liquidity begets price e�ciency, in the sense that more liquid currencies obey more

to the triangular arbitrage condition.
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Several implications emerge from our study. First, by shedding light on the intricate interre-

lations between FX rates, volume, and volatility, our work should support an integrated analysis

of FX rate evolution and risk. Our work also o�ers a straightforward method to measure FX

illiquidity and commonality. For investors, these insights should increase the e�ciency of trad-

ing and risk analysis. For policy makers, our work highlights the developments of FX global

volume, volatility, and illiquidity across time and currencies, which can be important for the

implementation of monetary policy and �nancial stability.
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(1997). Volatilities of di�erent time resolutions-analyzing the dynamics of market components.

Journal of Empirical Finance, 4(2-3):213–239.

Payne, R. (2003). Informed trade in spot foreign exchange markets: An empirical investigation.

Journal of International Economics, 61:307–329.

Pesaran, H. and Shin, Y. (1998). Generalized impulse response analysis in linear multivariate

models. Economics Le�ers, 58(1):17–29.

Podolskij, M. and Ziggel, D. (2010). New tests for jumps in semimartingale models. Statistical

inference for stochastic processes, 13(1):15–41.
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A Proofs

A.1 Proof of Proposition 1

�e log-return and volume at trade i are given by

r
x |y
i = ∆p

x |y
i = ϕ

x |y
i +

1
J

J∑
j=1

ψ
x |y
i,j , (25)

and the volume at i-th trade is

ν
x |y
i =

ξ x |y

2

J∑
j=1
|ψ

x |y
i,j − ψ̄

x |y
i |, (26)

where ψ̄ x |y
i = 1

J

∑J
j=1ψ

x |y
i,j . We assume for the moment that the common news term is zero, i.e.

ϕ
x |y
i = 0. Based on the return on the i-th interval, we can consider the realized variance, de�ned

as RV x |y =
∑I

i=1 (r
x |y
i )

2 with ∆ = 1/I > 0, as introduced by Andersen and Bollerslev (1998).

Following Barndor�-Nielsen and Shephard (2002b,a), taking the limit for ∆→ 0 (that is I →∞),

we get

p lim
I→∞

RV x |y =
1
J 2Vψ x |y , (27)

where Vψ x |y =
∑J

j=1Vψ x |y ,j is the variation of the FX rate on the unit interval generated by the

aggregated individual components of rx |y . �e term Vψ x |y ,j =
∫ 1

0

(
σ
x |y
j (s)

)2
ds is the integrated

variance associated with the j-th trader’s speci�c component. �e term µj(t) does not enter in the

expression ofVψ x |y ,j since the magnitude of the dri�, when measured over in�nitesimal intervals,

is dominated by the di�usive component ofψi,j that is driven by the Brownian motion. Following

Barndor�-Nielsen and Shephard (2003), for a given ∆ > 0 we can also de�ne the realized power

variation of order one (or realized absolute variation) as RPV x |y =
∑I

i=1 |ri |. By the properties of

the super-position of independent SV processes,25 the limit for ∆→ 0 of RPV x |y is

p lim
I→∞

∆1/2RPV x |y =

√
2
π
Sψ x |y , (28)

25Similarly to Barndor�-Nielsen and Shephard (2002b), ψ̄ x |y
i (t) =

1
J
∑J

j=1ψ
x |y
i, j is equivalent in law to ψ̄ x |y,∗

i =∫ ∆i
∆(i−1) σ̄

x |y (t)dW x |y,∗(t), where σ̄x |y (t) = 1
J

√∑J
j=1 σj

x |y 2
(t).
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where Sψ x |y ,j =
∫ 1

0 σ̄x |y(s)ds is the integrated average standard-deviation, where the la�er is

de�ned as σ̄x |y(t) = 1
J

√∑J
j=1 σj

x |y2
(t). Given equation (26), the aggregated volume of x |y on a

unit (daily) interval is νx |y =
∑I

i=1 ν
x |y
i , and le�ing I →∞, we get

p lim
I→∞

∆1/2νx |y =
ξ x |y

2

√
2
π
S̄ψx |y , (29)

with S̄ψx |y = 1
J

∑J
j=1

∫ 1
0 σ̃j

x |y(s)ds , where σ̃jx |y(t) =
√
(J − 1)2σjx |y2

(t) +
∑

s,j σs
x |y2
(t).

A.2 Proof of Proposition 2

Given Proposition 1, we get that

p lim
I→∞

Ax |y =
2Sψ x |y

ξ x |yS̄ψx |y
, (30)

which re�ects the ratio of the total average standard deviation carried by each trader. Under

homogeneity of the traders, we get that

S̄ψx |y = J
√
J − 1Sψ x |y , (31)

and Proposition 2 follows directly.

A.3 Proof of Proposition 3

By imposing the no-arbitrage restriction as in Brandt and Diebold (2006), it follows from (8) that

the squares of the synthetic returns at the i-th trade can be wri�en as

(̃r
x |y
i )

2 = (rx |zi + r
z |y
i )

2 = (rx |zi )
2 + (r

z |y
i )

2 + 2rx |zi r
z |y
i .

Under the maintained assumption that ϕx |yi = 0, the synthetic return can be expressed as r̃x |yi =
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which involves quantities that cannot be directly observed. However, by le�ing I →∞, we get
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Equation (35) highlights that the synthetic volume re�ects the aggregated trader-speci�c compo-

nents on the individual FX rates, x |z and z |y, as well as their aggregated correlation as measured

by ρx |z,z |y , which re�ects the correlation betweenψ x |z
j andψ z |y

j .
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Abstract

A vast majority of mortgages in the U.S. are securitized into agency mortgage-backed se-
curities (MBS), many of which are traded in the to-be-announced (TBA) forward market. By
allowing different MBS to be traded based on a limited set of characteristics, TBA market
generates liquidity, with the aggregate daily trading volume second only to the U.S. Treasury
market. In this paper, we quantify the effect of the unique secondary market trading structure
on individual borrowers’ mortgage rates, demand for mortgages, and consumer spending. With
a simple model, we show that the benefit of access to the TBA market is higher for loans with
less desirable prepayment characteristics. Then, exploiting sharp discontinuities in the prob-
ability of a loan to be included in an MBS eligible for TBA delivery, we estimate that TBA
eligibility reduces mortgage rates by 10–40 basis points, depending on the prepayment risk of the
loan. Furthermore, we also provide evidence that TBA eligibility affects borrowers’ refinancing
decisions and subsequent durable consumption.
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1 Introduction

Do financial markets matter for the real economy? More specifically, does liquidity and trading
structure of the secondary market matter? One may argue that trading structure in the secondary
market only affects the investors in those markets and that it does not impact the economy more
broadly.

From a theoretical perspective, better liquidity in the secondary market would result in better
prices in the primary market, leading to lower costs of capital for those raising funding. If investors
value liquidity, assets with better liquidity would have higher prices, and thus, investors would be
willing to pay higher prices in the primary market as well. A few recent studies (Brugler et al.,
2018a,b; Davis et al., 2018) use the introduction of post-trade transparency in the corporate bond
market and the change in trading rule at NASDAQ to show that secondary market trading structure
impacts the cost of capital for the firms issuing corporate bonds or seasoned equity.

In this paper, we focus on the market for agency mortgage-backed securities (MBS), which are
secured by mortgages in pools guaranteed by government-sponsored enterprises (Fannie Mae and
Freddie Mac) or the U.S. government (Ginnie Mae). Specifically, we study the impact of liquidity
and trading structure of the agency MBS market on mortgage rates for individual borrowers, demand
for mortgages, and consumer spending. The mortgage market is different from the markets studied
by the aforementioned papers in that it impacts a large set of population directly. In fact, a vast
majority of mortgages, particularly after the 2008 financial crisis, end up in agency MBS. Also,
although it has not been studied as much in the academic literature, the agency MBS market is the
second most actively traded fixed-income market.

The unique feature of the agency MBS market is the to-be-announced (TBA) market, through
which 90% of the trading is done. A TBA trade is a forward contract for a future delivery of MBS,
where parties do not specify the CUSIP but agree only on six parameters at the time of the trade:
agency (Fannie, Freddie, or Ginnie), coupon, maturity, price, par amount, and settlement date.
Thus, if an MBS meets the six parameters specified in the TBA trade and the eligibility criteria
for TBA delivery set by the Securities Industry and Financial Markets Association, then the TBA
seller can deliver any of such MBS. As a result, the TBA trading structure concentrates trading of
MBS with heterogeneous prepayment risks into a handful of TBAs and makes the market liquid.
Although the TBA trading structure is a vital part of the MBS market, no studies so far have
quantified the impact of TBA trading on mortgage borrowers in the primary mortgage market.

The goal of this paper is to quantify the impact of this unique trading structure on mortgage
rates for individual borrowers, demand for mortgages, and the real economy, exploiting cutoffs
that determine the probability that a loan is included in an MBS eligible for TBA delivery (i.e.,
TBA-eligible MBS). Given the uncertain future of the TBA market due to a potential housing
finance reform, some argue that the TBA market structure should be preserved, citing its benefit
for mortgage borrowers.1 This paper provides quantitative evidence on how much the TBA market

1For example, see Bright and DeMarco (2016).
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matters for individual mortgage borrowers.
TBA eligibility provides a number of benefits for an MBS investor. First, TBA eligibility gives

an MBS access to a more liquid market with a large investor base. A TBA-ineligible MBS must be
traded in the much less liquid specified pool (SP) market, where the individual CUSIP is specified
at the time of trade.2 Moreover, TBA pricing only depends on six parameters, thus is relatively
simple; this simplicity increases the investor base for TBA trades. Second, TBA eligibility decreases
downside risks for the MBS holder. All agency MBS, including TBA-eligible ones, can be traded in
SP in principle. In fact, despite the high SP trading cost, TBA-eligible MBS with better prepayment
characteristics often trade as SP to receive prices higher than the cheapest-to-deliver TBA prices.
However, having the option to trade in TBA shields such MBS from the risk of not being able to
find an buyer in the SP market. As a result, even an SP trade for TBA-eligible MBS is found to
be more liquid than that for TBA-ineligible MBS (Gao et al., 2017). These benefits may fully or
partially be passed down to primary market mortgage borrowers as lower mortgage rates.3

We begin our analysis with a simple model that describes the decision problem of an MBS seller
that can sell an MBS as TBA or SP. If traded as TBA, the seller receives the cheapest-to-deliver
price that does not depend on the prepayment risk of the MBS. If traded as SP, the seller receives
the price that reflects the prepayment risk at the expense of a stochastic trading cost, which can be
potentially very high. Thus, an implication of the model is that the option to easily sell the MBS
as TBA protects the seller from the downside risk of having a very large realized SP trading cost.
However, the value of TBA eligibility will depend on the prepayment risk of the MBS. An MBS
with lower prepayment risk is more likely to be traded as SP despite high trading costs, and thus
the option value of TBA trading will be lower for MBS. Moreover, loans with better prepayment
characteristics tend to be pooled together into the same MBS empirically. Thus, TBA eligibility
will be more valuable for loans with higher prepayment risks.

With these implications of the model in mind, we then estimate the impact of TBA eligibility
on the mortgage rate. Our empirical strategy exploits two cutoff-based rules that determine the
probability that a loan is included in a TBA-eligible MBS. An important difference between the two
cutoffs is that they affect TBA eligibility for loans located in the opposite ends of the prepayment
risk distribution. The model predicts that the estimated impact of TBA eligibility will be higher
for the cutoff that is more relevant for loans with higher prepayment risks. Moreover, estimating
the value of TBA eligibility at the two cutoffs will give us the range of TBA-eligibility benefit for
the mortgages in between.

The first cutoff is the national conforming loan limit (CLL), which determines the maximum
loan size that the government-sponsored enterprises (GSEs) can purchase and securitize. The GSEs
can securitize only “conforming” mortgages, whose sizes are not greater than the CLL. Starting in

2Bessembinder et al. (2013) find that the trading cost of TBA and SP trades are 1 basis points and 40 basis points,
respectively.

3The TBA market also positively impacts TBA-ineligible MBS because investors price TBA-ineligible MBS based
on TBA prices and may also hedge with TBAs. Hence, the effect we measure here is a lower bound of the total
impact of the TBA market.
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2008, the GSEs began purchasing “high-balance” loans, which are larger than the national CLL but
still not greater than the high-cost CLL.4 The high-cost CLL, which became effective in 2008, is
an increased loan limit for counties with high home prices. If an MBS contains more than 10% of
its pool value in high-balance loans, the MBS is ineligible for TBA delivery. Indeed, we find that
the probability to be included in a TBA-eligible MBS drops discontinuously from almost 100% to
around 65% for a loan securitized by the GSE with the size just above the national CLL. We also
find that a GSE loan with the size around the national CLL tend to have higher prepayment risks
than a majority of other loans securitized by the GSEs, most of which are smaller than the national
CLL. This is because a borrower with a larger loan usually has higher incentive to refinance because
the same decrease in interest rates would result in larger savings.

The second cutoff is the loan-to-value ratio (LTV) of 105. A TBA-eligible MBS is not allowed
to include even a single loan with LTV greater than 105. Thus, all loans with LTVs greater than
105 are included in TBA-ineligible MBS. Loans with such high LTVs were originated and sold to
the GSEs under the Home Affordable Refinance Program (HARP) in 2009. Because a borrower can
take advantage of HARP only once, and because the high LTV makes it difficult for such a borrower
to refinance without such a special government program, loans with LTVs around 105 empirically
exhibit lower prepayment risks than a majority of other loans securitized by the GSEs.

Using an empirical strategy that exploits discontinuities at the two cutoffs, we find that TBA-
eligibility reduces mortgage rates by 40 basis points for loans around the national CLL and 10
basis points for loans with LTVs around 105, respectively. The large difference in the estimated
magnitudes for the two cutoffs is consistent with the prediction of the model. Loans around the
national CLL tend to have higher prepayment risks than loans with LTVs around 105. Thus, the
option value of TBA will be more valuable for the former than the latter, thereby resulting in a
greater magnitude of the estimated benefit from TBA eligibility for the former.

The fact that we estimate the impact on the mortgage rate with the two cutoffs is important not
only for testing the prediction of the model but also for estimating the upper and lower bounds of
the value of TBA eligibility. A common criticism against research designs estimating local treatment
effects based on discontinuities is that the resulting estimate can be very different from the true
effect for the entire population. This concern would apply to our setup if we estimated the impact
on the mortgage rate using only one of the two cutoffs. In fact, the two cutoffs result in very
different magnitudes, and it would be difficult to apply any one of these estimates to loans with
different prepayment risks. However, the two cutoffs affect loans near either end of the spectrum of
prepayment risks. Thus, the estimated impact on the mortgage rates with the two cutoffs are likely
to be close to the upper and lower bounds, and we expect that the benefit of TBA eligibility will fall
between our two estimates for loans with prepayment risks toward the middle of the distribution of
prepayment risks.

Next, we estimate the impact of TBA eligibility on demand for mortgages. Because TBA
4High-balance loans are often also referred to as jumbo-conforming or super-conforming loans. These loans are

different from jumbo loans, which the GSEs are not allowed to securitize.
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eligibility impacts mortgage rates, we would expect that it also impacts the demand for mortgages.
Specifically, we investigate how much TBA eligibility affects refinancing decisions of borrowers with
remaining loan balances around the national CLL.5 Studying refinancing decisions is important
because of their implications for monetary policy transmission and the real economy. In fact, there is
a growing literature on the refinancing channel of monetary policy transmission, where lower interest
rates induce mortgage borrowers to refinance and subsequently increase their consumption.6 Using
the data that link each mortgage to the borrower’s credit record, we are able to identify whether a
borrower refinances a mortgage and how much the mortgage balance increases after refinancing. We
find that the monthly probability of plain refinancing, which does not involve a significant increase
in the loan balance, discontinuously increases by 0.25 percentage points (50% of the unconditional
mean) when remaining mortgage balance reaches the national CLL from above. This finding suggests
that borrowers delay refinancing in order to refinance into a TBA-eligible mortgage. A borrower
slowly pays off the remaining principal according to the amortization schedule, waiting until his
balance reaches the national CLL. Once the borrower’s balance reaches the national CLL, the
borrower quickly refinances into a loan below the national CLL. Moreover, this waiting can be quite
long. The average borrower in our sample would need to wait for 17 (32) months to pay down
$10,000 ($25,000) to reach the national CLL.

Finally, we study whether the delay of refinancing stemming from TBA eligibility affects real eco-
nomic outcomes outside the mortgage market. Specifically, we investigate how a borrower’s durable
consumption changes upon refinancing. Our data allow us to identify new auto loan originations,
from which we can infer whether and when an individual purchases a new automobile. Among
borrowers who refinance when their remaining balances are close to the national CLL, we find that
the probability of a new auto sale sharply increases immediately after refinancing. Consistently, we
also find that a borrower’s auto new loan origination increases right after a borrower’s remaining
mortgage balance reaches the national CLL from above. At that point, a borrower is much more
likely to refinance his mortgage and then purchase a new car with a new auto loan. Thus, when a
borrower delays refinancing in order to refinance into a TBA-eligible loan, the borrower’s durable
consumption is also delayed. This finding implies that the unique trading structure of agency MBS
also matters for monetary policy transmission and real economic outcomes by affecting borrowers’
refinancing and subsequent durable consumption.

Literature Review This paper adds to the literature on the real effects of financial markets.7

A few papers in this literature study the effect of secondary market trading structure and liquidity
on firms’ borrowing costs and investments. Both Brugler et al. (2018b) and Davis et al. (2018)

5We do not consider a refinancing decision of a borrower with updated LTV close to 105 because we do not observe
the updated house value that would be used in underwriting a borrower refinance application.

6For examples, see Abel and Fuster (2018), Agarwal et al. (2017), Beraja et al. (2018), Di Maggio et al. (2016),
Greenwald (2018), and Wong (2018).

7Bond et al. (2012) provides a survey of theoretical and empirical literature on the real effects of financial markets.
A majority of papers in this area study the effect that financial markets have on firms’ decisions because of the
information or the incentives that financial markets provide.
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show that the introduction of post-trade transparency in the secondary corporate bond market has
decreased cost of capital in the primary market. Field et al. (2018) also use the same variation to
show that that firms with greater bond liquidity engage in more merger and acquisition activities.
Brugler et al. (2018a) study a specific rule change in NASDAQ that moved the market from a
dealer-oriented market towards a more centralized one and argue that this rule change decreased
the underpricing of seasoned equity offerings.

However, only a few papers in this literature study consumer financial markets. Fuster and
Vickery (2014) show that there are fewer fixed-rate mortgages when securitization is difficult. Ben-
melech et al. (2016) find that the collapse of the asset-backed commercial paper market reduced
automobile purchases by decreasing the auto loan supply from nonbank auto lenders that depended
on the funding market. We contribute to this literature by showing how the trading structure of
the secondary market affects the primary mortgage market and consumer spending.

This paper is also related to a small number of papers that study the trading structure and
liquidity of the secondary market for agency MBS, with a particular focus on TBA and SP trading.
Vickery and Wright (2013) provides a comprehensive overview of the institutional details of TBA
market and discusses how TBA market generates liquidity and how TBA trades are used. They
also argue that TBA market liquidity would likely impact the pricing in the primary market for
mortgages. However, given that their paper mostly focuses on the secondary market, they only
provide preliminary evidence that TBA eligibility affects mortgage rates and caution the readers
that differences in prepayment risks are not controlled for. In this paper, we look at narrow bands
around TBA-eligibility cutoffs and use discontinuity tests to tease out the impact of TBA eligibility.

In addition, Bessembinder et al. (2013) studies trading costs in structured credit products and
finds that trading costs in TBA trades are very small (1 bp) while that of SP trades are much higher
(40 bps). Gao et al. (2017) argues that TBA eligibility affects trading costs for SP trades because
dealers can more easily hedge SP inventory for TBA-eligible MBS with TBA trades. Schultz and
Song (2018) studies the impact of post-trade transparency in the TBA market.

This paper also contributes to the literature that studies monetary policy transmission through
the mortgage market. A number of papers study the refinancing channel of monetary policy trans-
mission; for example, see Abel and Fuster (2018), Agarwal et al. (2017), Beraja et al. (2018),
Di Maggio et al. (2016), Greenwald (2018), and Wong (2018). Moreover, Di Maggio et al. (2017)
studies consumption and deleveraging of borrowers with adjustable-rate mortgages, whose mort-
gage rates would be automatically decreased by an accommodative monetary policy. We add to
this literature by showing that the secondary mortgage market trading structure is an important
factor that affects refinancing, which is an important part of monetary policy transmission.

This paper is also related to studies that estimate the spread in mortgage rates between con-
forming and jumbo loans such as Passmore et al. (2005), Sherlund (2008), Kaufman (2014), and
DeFusco and Paciorek (2017). These papers measure how much the GSEs subsidize the mortgage
market by comparing mortgage rates of conforming loans just under the CLL and jumbo (not high-
balance) loans just above the CLL. Because jumbo loans cannot be sold to the GSEs, the spread
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reflects not only the value of TBA eligibility but also the value of credit guarantees from the GSEs.
In our empirical strategy, in contrast, we compare GSE loans around the national CLL to estimate
the value of TBA eligibility.

2 Institutional Details

2.1 Basic Facts about the TBA Market

TBA Eligibility A vast majority of mortgages in the U.S. are securitized and packaged into
agency MBS. Most of agency MBS are backed by mortgages in pools guaranteed by Fannie Mae,
Freddie Mac, or Ginnie Mae. Thus, these mortgages carry either implicit or explicit credit guarantees
from the U.S. government.

TBA trade is in essence a forward contract where two parties agree on a price today for a future
delivery of agency MBS. Moreover, instead of agreeing upon a specific CUSIP at the onset of the
trade, parties only agree on six general parameters: agency (Freddie Mac, Fannie Mae, and Ginnie
Mae), coupon, maturity, price, par amount, and settlement date. Only 48 hours before the delivery
date, the seller is required to notify the buyer of the specific CUSIP(s) that he will deliver. Because
the seller chooses what to deliver, there is a cheapest-to-deliver pricing for TBA trades. Given the
large number of individuals CUSIPs in the agency MBS market and the relative homogeneity, this
structure concentrates the trading into a handful of TBAs and generates liquidity. According to
Vickery and Wright (2013), TBA trades account for 90 percent of trading volume in the agency
MBS market.

However, not all MBS are allowed to be delivered for TBA settlement. There are largely three
reasons why an MBS is not eligible for TBA settlement. First, MBS that include any loans with the
original LTV greater than 105 are not TBA-eligible. Mortgages with such high LTVs are usually
very difficult to be sold to the GSEs if not impossible. The GSEs began to buy and securitize these
loans under the Home Affordable Refinancing Program (HARP). This program was set up in March
2009 to help refinancing for existing mortgage borrowers with depreciated home prices due to the
housing market crisis at that time. With a very large decrease in home prices, many borrowers found
themselves having remaining mortgage balances more than their the market values of their homes.
In other words, their updated LTVs were greater than 100, which would have made it impossible
for these borrowers to refinance into new loans to take advantage of historically low interest rates
at that time. However, HARP made it possible for borrowers meeting its eligibility criteria with
very high LTVs to refinance into a GSE loan.8 Initially, HARP excluded loans with updated LTVs
greater than 125, but the LTV limit was removed in December 2011. As for TBA eligibility of
HARP loans, only HARP loans with LTVs up to 105 were allowed to be included in TBA-eligible
MBS. Thus, any HARP loans with LTVs greater than 105 must be included in TBA-ineligible MBS.

Second, MBS that have more than 10 percent of the pool value in high-balance loans are not
8A borrower is eligible for HARP if he originated a mortgage sold to a GSE before May 31, 2009 and if he had

not missed a mortgage payment for past 12 months.
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eligible to be delivered for TBA settlement. High-balance loans refer to mortgages with loan size
greater than the national conforming loan limit (CLL) but not greater than the county-specific
high-cost CLL.9 The GSEs are only allowed to purchase “conforming” loans that are not greater
than the CLL. Until February 2008, the CLL was national except for Alaska, Guam, Hawaii, and
Virgin Islands. For example, with the national CLL equal to $417,000 in 2007, the GSEs were able
to buy only loans with size up to $417,000. In March 2008, however, Congress passed the Economic
Stimulus Act (ESA) in response to the ongoing financial crisis, which raised the CLL in counties
with high home prices. The new CLLs for the high-cost counties under the ESA were set equal to
the greater of $417,000 and 125 percent of the county-level median home price with the ceiling of
$725,750.10 As a result, the ESA made it possible for the GSEs to buy and securitize high-balance
loans. Initially, there was uncertainty about whether MBS including high-balance loans will be
eligible for TBA settlement. Eventually, the SIFMA set the rule in August 2008 such that MBS
with more than 10 percent of the pool value in high-balance loans are TBA-ineligible.

Lastly, MBS with greater than 15 percent of pool value in loans with other non-standard features
such as co-op share loans, relocation loans, and loans with significant interest rate buydowns are
not eligible for TBA delivery. As will be discussed in Section 2.2, only very few agency MBS are
TBA-ineligible based on this criterion. Thus, we do not study the loans with these non-standard
features in this paper.

Specified-Pool Market In a specified pool (SP) trade, parties agree and trade on the specific
CUSIP, and each CUSIP is thinly traded. As a result, a SP trade usually has a higher trading cost
than a TBA trade. In fact, Bessembinder et al. (2013) find that the trading cost of TBA and SP
trades are 1 basis points and 40 basis points, respectively. Agency MBS that are not eligible for
TBA delivery must be traded in the specified-pool (SP) market. TBA-eligible CUSIPs may also
trade in the SP market; they may do so especially when the value of the CUSIP is high, that is,
when the prepayment risk is low compared to other TBA-eligible CUSIPs.

2.2 TBA-Ineligible Pools

Figure 1 shows the evolution of dollar-weighted shares of loans (among 30-year fixed-rate mortgages
sold to the GSEs) included in new agency MBS that are not eligible for TBA settlement. We
categorize TBA-ineligible MBS into three broad groups: high-balance MBS, high-LTV MBS, and
other TBA-ineligible MBS. First, high-balance MBS consist of high-balance loans only.11 Thus,
high-balance MBS are not eligible for TBA settlement. Second, high-LTV MBS consist of HARP
loans with LTVs greater than 105. Because a TBA-eligible MBS cannot include any loan with
the LTV greater than 105, such loans are packaged together into a high-LTV MBS. Third, other

9These loans are sometimes referred to as super-conforming or jumbo-conforming loans.
10The national CLL was $417,000 until the end of 2016. It was increased to $424,100 in 2017 and then to $453,100

in 2018.
11Note that not all high-balance loans are included in high-balance MBS. Because a TBA-eligible MBS is allowed to

have up to 10% of its pool value in high-balance loans, many high-balance loans are still packaged into TBA-eligible
MBS. We will discuss this in more details in Section 3.2.
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TBA-ineligible MBS include various MBS that are not eligible for TBA settlement because loans
in the MBS have other non-standard features such as co-op share loans, relocation loans, and loans
with significant interest rate buydowns.

There are two main takeaways from Figure 1. First, the main reason why a loan is included in
a TBA-ineligible MBS during the sample period is either because the loan has the original balance
greater than the national CLL (a high-balance MBS) or because the LTV of the loan is greater
than 105 (a high-LTV MBS). Most TBA-ineligible MBS are either high-balance or high-LTV MBS
except in early 2009, although shares of the two types of MBS vary over time.

Second, the total share of TBA-ineligible MBS is not negligible during our sample period. In
early 2009, the total share of TBA-ineligible MBS was close to zero, which means that all loans
in the sample were included in TBA-eligible MBS. However, the share of loans in TBA-ineligible
MBS grew substantially in the next few years, reaching close to 20% in mid-2012. The increase was
mainly due to increasing originations of loans included in high-balance and high-LTV MBS.

The large shares of high-balance and high-LTV MBS in mid-2012 were in part because of a
large refinance volume driven by historically low mortgage rates at that time. Many high-balance
loan originations were due to refinancing by borrowers with jumbo mortgages that were originated
pre-crisis (Bond et al., 2017). As mortgage rates continued to decrease in years after the 2008
financial crisis, many such borrowers refinanced into high-balance mortgages. The low interest rate
environment, together with the slump in house prices, also resulted in a large number of mortgages
being refinanced into HARP loans. In addition, a new version of HARP was implemented in
December 2011 (called HARP 2.0) to increase the take-up of the program. Among many changes
brought by HARP 2.0 to encourage borrowers to refinance into HARP loans, even a borrower with
LTV greater than 125% were allowed to refinance into HARP mortgages without private mortgage
insurance.

As mortgage rates increased in recent years, the refinancing volume decreased, and the shares
of the high-balance and high-LTV MBS also decreased. In particular, there are barely any new
issuances of the high-LTVMBS in 2018 as many borrowers eligible for HARP already took advantage
of the program. Because the program is only available for borrowers who took out loans sold to the
GSEs by early 2009, the number of borrowers eligible for the program will only decrease over time.
Moreover, the house price appreciation in recent years has left very few borrowers with very high
updated LTVs.
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Figure 1: Share of Mortgages in TBA-Ineligible MBS: This figure plots the dollar-weighted
share of loans in TBA-ineligible MBS, among 30-year fixed-rate mortgages in MBS securitized by
the GSEs, that were originated in the period from 2008 to August 2018. Each month refers to the
month of loan origination. The red area represents the share for loans in high-LTV MBS, which
contain only loans with LTVs greater than 105. The green area represents the share for loans in high-
balance MBS, which contain only high-balance loans. However, there are also high-balance loans
included in TBA-eligible MBS. The blue area represents the share for loans in other TBA-ineligible
MBS. The source of the data for this figure is eMBS.
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2.3 Two Cutoff Rules

In our empirical analyses, we focus on two main TBA-eligibility cutoffs: loan size of national CLL
and LTV of 105.12 For both loan size and LTV dimensions, the probability that a loan is included in
a TBA-eligible MBS changes discontinuously around the cutoffs, which we will show in Section 3.2.
Our empirical strategies hinges on the discontinuities at the two cutoffs. For instance, to control for
other characteristics that affect mortgage rates, we compare loans with sizes just under and above
the national CLL. Similarly, we also compare loans with LTVs just under and above the threshold
of 105.

12As discussed earlier, high-balance mortgages are greater than the national CLL but not greater than high-cost
CLL.
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3 Data and Summary Statistics

3.1 Data Description

We use multiple data sources to estimate the effect of TBA eligibility on the primary market. First,
we use the eMBS data, which provides various information on agency MBS and mortgages underlying
each of agency MBS. From this data, we obtain information on MBS-level characteristics such as
coupon rate, issuer, pool issue amount, pool issue date, product type, TBA eligibility, prepayment
history, the distribution of loan-level characteristics within an MBS, etc. The loan-level eMBS
data provides information about loan-level characteristics and prepayment history. Moreover, the
loan-level data provide a link between a loan and the CUSIP of the MBS that includes the loan.
This information is crucial in correctly estimating the benefit of TBA eligibility on mortgage rates
because some high-balance loans can be included in TBA-eligible pools, as discussed in Section 2.
The eMBS loan-level data to which we have access covers loans in Fannie Mae pools that are issued
in or before October 2013 and loans in Freddie Mac pools that are issued in or before August 2018.
Thus, we are missing mortgages sold to Fannie Mae for for the period after late 2013.

The second data is the loan-level data from Fannie Mae and Freddie Mac. They provide a pub-
licly available single family loan-level performance data for fixed-rate mortgages originated between
between January 1, 1999 and September 30, 2017. Importantly for this paper, they also provide
loan-level data for HARP mortgages and a link between a HARP mortgage and the original loan.
With this link, we can track performance of an original loan and a HARP loan, which is crucial for
our empirical test using the LTV cutoff.

We use the first two data sets for our analysis of the impact on mortgage rates. In our sample,
we only keep 30-year fixed-year-mortgages originated in or after 2009 that are sold to the GSEs.
In addition, we only keep loans originated for single-family houses to keep the sample relatively
homogeneous. We also use different subsamples for different cutoffs to only compare loans near
each cutoff. The subsample selection will be explained in more details in Section 5.

The third data set we use is Equifax Credit Risk Insight Servicing and Black Knight McDash
Data (CRISM), which links loan-level mortgage data to each borrower’s credit records from Equifax.
We use this data to analyze the impact on refinancing and subsequent durable consumption through
new auto loan originations.

3.2 Summary Statistics

Figure 2 shows that the fraction of loans (among 30-year fixed-rate mortgages sold to the GSEs)
that are included in TBA-eligible MBS changes substantially and discontinuously at the two cutoffs.
In panel (a), the fraction is one for loans with size below the national CLL. However, the fraction
decreases to around 0.6 for loans right above the CLL. This fraction does not decrease all the way to
zero because high-balance loans can still be included in a TBA-eligible MBS as long as their share
does not exceed 10%. In panel (b), the fraction decreases sharply to zero once the LTV exceeds 105
because any of such loans cannot be included in TBA-eligible MBS.
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Note that these figures are created using only GSE loans. Consequently, jumbo loans, which are
greater than the high-cost CLLs and thus cannot be securitized by the GSEs, are excluded from the
data sample, and loans greater than the national CLL in the figure are high-balance loans that are
securitized by the GSEs. Therefore, the fraction of loans included in TBA-eligible MBS decreases
at the national CLL not because loans above the national CLL cannot be sold to the GSEs but
because there is a limit on how much high-balance loans can be part of TBA-eligible MBS.

This is the main difference from papers that estimate spreads between jumbo and conforming
loans in the period before the ESA introduced the high-cost CLLs in 2008 (e.g. Passmore et al.
(2005); Sherlund (2008); Kaufman (2014); DeFusco and Paciorek (2017)). These papers aim to
estimate how much the GSEs reduce mortgage rates by comparing loans that are eligible and
ineligible for the GSE securitization. The effect of GSE eligibility will capture not only the value
of having access to the TBA market, which is only available for agency MBS, but also the value
of mortgage credit guarantees for GSE loans. In contrast, our data sample consists only of loans
securitized by the GSEs, so we can estimate the effect of TBA-eligibility controlling for the effect
of mortgage credit guarantees from the GSEs.

Figure 2: Probability to Be Included in TBA-eligible Pools around the Cutoffs: These
figures plot the probability for a loan to be included in TBA-eligible MBS. Panel (a) plots the
probability against the loan size. In the x-axis of this panel, the loan size is measured relative to
the national CLL in thousand dollars. The source of the data for Panel (a) is eMBS. Panel (b) plots
the probability against the LTV of a HARP loan. The source of the data for Panel (b) is loan-level
data for HARP.
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Figure 3 presents loan-level density around the two cutoffs. Bunching at the cutoffs shown in
both panels is indicative of pricing differentials between loans below and above the cutoffs, possibly
because of TBA eligibility. If mortgage rates are lower for loans that are more likely to be included
in TBA-eligible MBS, borrowers that are slightly above the cutoff could to adjust the mortgage
(e.g., by putting higher downpayments) to be at or below the cutoff. Previous papers that estimate
the rate spread between jumbo and conforming loans also report a pattern similar to panel (a)
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at the national CLL before 2008; the pattern there is driven by pricing differential between loans
securitized by the GSEs and loans that are not.

At the same time, the bunching at the cutoffs also poses challenges to estimation of the rate
spreads at the cutoffs because those who bunch might have different unobserved characteristics from
those who originate loans just above the cutoffs. If that is the case, then at least some of the rate
spreads may be accounted for by the potential difference in unobserved characteristics of borrowers.
We discuss how we address this challenge in Section 5.

Figure 3: Bunching at the Cutoffs: These figures plot loan-level density. Panel (a) plots the
density against the loan size. In the x-axis of this panel, the loan size is measured relative to the
national CLL in thousand dollars. The source of the data for Panel (a) is eMBS. Panel (b) plots
the density against the LTV of a HARP loan. The source of the data for Panel (b) is loan-level
data for HARP.
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4 Simple Model

We write down a simple model that describe the value of TBA eligibility for an MBS. Consider a
risk-neutral originator (or Fannie Mae or Freddie Mac) that is selling an MBS with fundamental
valuem. The fundamental valuem would mostly be driven by prepayment risk. If the MBS is TBA-
eligible, the originator has two options. First is to sell in the TBA market at price Ptba. Because of
the cheapest-to-deliver pricing in TBA trades, this price does not depend on m. Second is to sell
in the SP market at price Psp(m) + ε, where ε ∼ N (µ, σ2). The expected SP price, Psp(m), is an
increasing function in m. The noise term ε can be thought of as coming from a random liquidity
shock to the SP market or the difference in private valuation (or preferences) of the buyers. We
assume that the originator observes ε before choosing which market to sell the MBS at.

The originator sells in the TBA market if Psp(m) + ε < Ptba. The expected value of this MBS
is:

V (m) = ρ(m)Ptba + (1− ρ(m))E [Psp(m) + ε|ε > Ptba − Psp(m)] (1)
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where ρ(m) is the probability that this MBS trades in the TBA market. The above equation
illustrates that TBA eligibility decreases downside risk. When ε is low, that is, when the price that
one can receive by selling in the SP market is low, one can sell the MBS in the TBA market and
get a better price. This optionality in effect allows one to always sell the MBS at reasonable prices
and makes the MBS more liquid (Gao et al., 2017).

We can rearrange Equation (1) to more clearly show the value of TBA eligibility. Given that the
expected value of an MBS that is not TBA eligible is simply Psp(m), the value of TBA eligibility
is:

V (m)− Psp(m) = ρ(m)E [Ptba − Psp(m)− ε|ε < Ptba − Psp(m)] . (2)

From this expression, it can be easily seen that this value is always positive.
Given the simple structure of the model, we can solve for ρ(m) and V (m)− Psp(m).

Lemma 1.

ρ(m) = 1− Φ
(
Psp(m)− Ptba

σ

)
V (m)− Psp(m) = −

{
1− Φ

(
Psp(m)− Ptba

σ

)}
(Psp(m)− Ptba) + σφ

(
Psp(m)− Ptba

σ

)
where Φ is the standard normal CDF, and φ is the standard normal PDF.

We can easily show the following properties using Equation (1) and Lemma (1).

Proposition 1. Probability of trading in the TBA market, ρ(m), and the value of TBA eligibility,
V (m)− Psp(m), have the following properties:

(i) ρ(m) is a decreasing function in m: Probability of trading in the TBA market is higher for
MBS with higher prepayment risks.

(ii) V (m)− Psp(m) > 0: The value of TBA eligibility is positive.
(iii) −1 ≤ ∂(V (m)−Psp(m))

∂Psp(m) ≤ 0: The value of TBA eligibility is higher for MBS with higher
prepayment risks.

These results and the interpretations are fairly intuitive. MBS with higher prepayment risks
have lower value (Psp(m) and m are lower), and thus are more likely to be traded through the TBA
market. Hence, the value added from TBA eligiblity is also higher for those MBS. Lastly, the value
of TBA eligiblity is positive because TBA eligiblity gives an option to trade in the TBA market.
Although we currently take Psp(m) to be exogenous, we can easily extend the model to make it
endogenous. Proposition 1 still hold in the extended model. In rest of this paper, Proposition 1(iii),
namely that the value of TBA eligibility is higher for MBS with higher prepayment risks, will be
important. Lastly, while we do not model how the value of TBA eligibility, V (m) − Psp(m), gets
passed to individual loans in the pool, we expect that it would fully or partially get passed down
to the mortgage borrowers in the primary market.
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Value of TBA-eligibility and Prepayment Risks So far, we have shown that the value of
TBA eligibility is greater for MBS with higher prepayment risks. What does this imply for the
value of TBA-eligibility and loan-level prepayment risks? By definition, MBS with better prepay-
ment characteristics (or lower prepayment risks) should have a larger share of loans with better
prepayment characteristics than others. Moreover, we find that mortgage lenders tend to pool
loans with better prepayment characteristics into the same MBS and trade the MBS in the SP
market. Thus, loans with better prepayment characteristics will end up in MBS with better overall
prepayment characteristics, and the value of TBA-eligibility will be also lower for such loans.

How is the relationship between prepayment risks and the value of TBA eligibility applied to our
empirical setting? Figure 4 plots the relationship between ex-post prepayments and loan amounts
(left panel) and between ex-post prepayments and LTVs (right panel). Ex-post prepayments in the
figure are measured in terms of whether a loan was paid off completely by 36 months after the
loan origination. Of course, this is a very specific measure of prepayments, but the pattern remains
qualitatively unchanged when we use other loan ages. To control for the potential interactive effect
of mortgage rates and interest rate path on prepayments, we consider residual prepayments, which
are calculated by removing variation accounted for by the origination month × mortgage rate fixed
effects.

The left-hand-side figure shows that prepayment risks and loan amounts are positively correlated.
The vertical line is drawn at $417,000, which is the national CLL until the end of 2016. Combined
with the fact that a vast majority of loans are smaller than the national CLL as shown in Figure
3, this prepayment pattern suggests that loans around the national CLL have higher prepayment
risks than a vast majority of loans securitized by the GSEs. Because the value of TBA eligibility
will be higher for loans with higher prepayment risks, it is likely that the value of TBA eligibility
for loans around the national CLL is close to the upper bound of the value of TBA eligibility.

On the other hand, the right-hand-side figure shows that prepayment risks and LTVs are nega-
tively correlated. The vertical line is drawn at LTV 105, which is another cutoff used in the empirical
analysis. Although the figure shows prepayments only for LTVs greater than 85, the prepayments
for LTVs below 85 are higher than prepayments for LTVs greater than 85. This implies that loans
with LTVs around 105 have lower prepayment risks than a vast majority of loans securitized by the
GSEs. Thus, it is likely that the value of TBA eligibility for loans with LTVs around 105 is close
to the lower bound of the value of TBA eligibility.
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Figure 4: Ex-post Prepayments by Loan Age 36 Months: This figure displays the relationship
between ex-post prepayment risks and loan amounts (on the left) and LTV (on the right). Vertical
lines refer to the two cutoffs used in our empirical analysis: the national CLL (on the left) and LTV
of 105 (on the right). Ex-post prepayments in the figure are measured in terms of whether a loan
was paid off completely by loan age 36 months since origination. To control for potentially different
prepayment behaviors depending on when a loan is originated and other loan characteristics, we
consider residual prepayments, which are calculated by removing variation accounted for by the
origination month × mortgage rate fixed effects.
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5 Effects on Mortgage Rates

To quantify the benefit of TBA eligibility at the loan level, we would ideally compare interest rates
between two identical loans, one of which is included in a TBA-eligible MBS while the other is
included in a TBA-ineligible MBS. We can get close to the ideal situation by exploiting the rules
that determine whether an MBS is eligible for TBA, which result in the discontinuities in the
probability that a loan is included in TBA-eligible MBS around the cutoff values. We use the two
cutoffs discussed earlier: the national CLL and LTV of 105.

5.1 High-Balance Loans

As shown by panel (a) in Figure 3, a high number of loans bunch at the national CLL although
loans larger than the national CLL can be sold to the GSEs. This bunching poses a challenge to an
identification strategy that utilizes the discontinuity in the probabilities for a loan to be included
in TBA-eligible pools. Borrowers who bunch might have different unobserved characteristics from
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those who take out loans just above the cutoff. In that case, the rate spreads could be due to the
potential difference in unobserved characteristics of borrowers.

We overcome this challenge using an instrument variable strategy used by previous papers which
estimate the impact of GSE purchase eligibility on mortgage rates in the period before the high-cost
CLL was introduced.13 The main idea of this empirical strategy is to utilize an alternative cutoff
based on the home appraisal value instead of the loan size. The GSEs usually requires a borrower
with less than a 20% down payment to have a mortgage insurance. In fact, a significant fraction
of borrowers (36%) make exactly 20% down payments in our data. With this ubiquity of the 20%
down payment, a borrower purchasing a home with the appraisal value not greater than 125% of
the national CLL would most likely take out a conventional conforming mortgage. In contrast, a
borrower purchasing a home with the appraisal value greater than 125% of the national CLL would
take out a high-balance mortgage with a greater probability. Therefore, the probability of a loan
to be included in a TBA-eligible MBS will change discontinuously depending on whether the home
value is greater than 125% of the national CLL.

For this analysis, we impose the following additional sample selection criteria to keep the sample
relatively homogeneous. First, we only keep purchase loans because our identification strategy is
the most relevant for such loans. In fact, a majority of new originations with original LTV of 80
are purchase loans. Second, we exclude any loans with second mortgages (by comparing combined
LTV and original LTV) or any loans with mortgage insurance (original LTV greater than 80).

The alternative cutoff based on the home value leads to a smooth density around the cutoff.
Figure 5 shows differences in sorting patterns around the two different cutoffs. It is very clear
that whereas panel (a) exhibits bunching at the national CLL, panel (b) shows a relatively smooth
density around the cutoff based on the home appraisal value.

13Examples of such papers are Adelino et al. (2012); Kaufman (2014); DeFusco and Paciorek (2017). Another
related paper that used the identification strategy is Vickery and Wright (2013), which studies how securitization
affects availability of fixed-rate mortgages.
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Figure 5: Sorting around the Cutoffs: These figures plot loan-level density. Panel (a) plots the
density against the loan size. In the x-axis of this panel, the loan size is measured relative to the
national CLL in thousand dollars. Panel (b) plots the density against home value associated with
each loan. In the x-axis of this panel, the home value is measured relative to the cutoff based on
the home value in thousand dollars. The source of both figures is eMBS.
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Regression Specification To estimate the effect of TBA eligibility on mortgage rates using the
IV strategy, we start with the following first-stage regression:

NoTBAi = α1[hi > h∗t(i)] + g−(hi; θ0) + g+(hi; θ1) + Ziγ + ξs(i)×l(i)×t(i) + εi. (3)

The dependent variable, NoTBAi, is a dummy variable that equals one if loan i is included in a
TBA-ineligible MBS. On the right hand side, hi represents the house appraisal value associated with
loan i, and h∗t(i) is the 125 percent of the national CLL that is effective for the year corresponding
to the origination year-month t(i) for loan i.14 Thus, 1[hi > h∗t(i)], which is our instrument, is a
dummy variable that is equal to one if the house appraisal value associated with loan i is greater
than 125 percent of the national CLL. Based on Figure 5, we expect that the coefficient estimate
for α is negative.

Next, g−(hi; θ0) and g+(hi; θ1) represent polynomials of the running variable hi for values not
greater than h∗t(i) and values greater than h∗t(i), respectively. Both θ0 and θ1 are the coefficients
of the polynomials and will be estimated. We experiment with different degrees of polynomials to
see how sensitive the estimate for the main coefficient, α, is.. Vector Zi contains other loan and
borrower characteristics relevant for loan pricing: credit score, loan-to-income ratio, whether a loan
is originated by a broker, and whether a loan is originated by a correspondent lender. The next term
ξs(i)×l(i)×t(i) refers to the fixed effects for a combination of state s(i), the lender l(i), and origination
year-month t(i). With these fixed effects, we can flexibly control for any differences across states,
mortgage lenders, and origination months.

14During our sample period, the national CLL was set at $417,000 from 2009 to 2016, $424,100 in 2017, and
$453,100 in 2018. Thus, the cutoff is $521,250, $530,125, and $566,375, respectively.
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Once we estimate the first stage regression, we estimate the following second stage regression:

Ratei = β ̂NoTBAi + g−(hi;φ0) + g+(hi;φ1) + Ziδ + χs(i)×l(i)×t(i) + ωi (4)

Based on the estimates of the first-stage regression, we calculate predicted value of the probability
that loan i is not included in a TBA-eligible MBS ( ̂NoTBAi). Then we use this variable in place
of 1[hi > h∗t(i)] from Equation (3). The coefficient on ̂NoTBAi, β, estimates the impact of TBA
eligibility on loan rates.

Graphical Examination of Discontinuities Before estimating the regressions, we first inves-
tigate whether there are visible discontinuities at the home appraisal value cutoff with respect to
the probability of being included in TBA-ineligible MBS and mortgage rates. To precisely exam-
ine the relationship of the two variables and the home appraisal value, we remove variation in the
two variables accounted for by the control variables Zi and the fixed effects ξs(i)×l(i)×t(i). For this
purpose, we estimate a regression described by Equation (3) with the two variables (NoTBAi and
Ratei) as dependent variables, using the sample of loans with corresponding home values within
the window of $50,000 around the cutoff. Then by subtracting the estimate of Ziγ + ξs(i)×l(i)×t(i)

from the dependent variable, we calculate the residual value of the dependent variable. We plot
the residual dependent variable against the difference between the home appraisal value and 125
percent of the national CLL in Figure 6.

Discontinuities at the cutoff are clearly visible for both NoTBAi and Ratei. Moreover, both
panels have very similar patterns in terms of not only the jump at the cutoff but also the change
in the slope. In both panels, the residual dependent variables do not change very much as the
home appraisal value approaches to the cutoff from below. At the cutoff, both residual dependent
variables increase discretely, and they increase as the home appraisal value moves upward from the
cutoff. This similarity in the patterns shown in both panels indicates that TBA eligibility reduces
mortgage rates.
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Figure 6: Probability to Be in TBA-ineligible MBS and Mortgage Rates (Cutoff 1): The
figures plot the residual probability to be included in TBA-ineligible MBS (panel (a)) and the resid-
ual mortgage rate (panel (b)) against home values. The residual values are obtained by removing
variation accounted by observable loan characteristics (Zi) and the fixed effects (ξs(i)×l(i)×t(i)) after
running regressions given by Equation (3) with NoTBAi and Ratei as dependent variables. Each
dot in the plot represents the average value of each residual variable for each bin of the size of
$2,500.
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IV Regression Results First, we estimate the first-stage regression described by Equation (3).
Table 1 presents estimates of α, which measure the difference in the probability of being included in
a TBA-ineligible MBS between loans just above the cutoff and loans just below the cutoff. Columns
(1)–(3) display estimates with a subsample with loans for home values within the window of $50,000
around the cutoff. For instance, until 2016, this sample covers home values ranging from $471,250 to
$571,250 with the national CLL equal to $417,000. Columns (4)–(6) display estimates with an even
smaller subsample with the window of $25,000 around the cutoff. Until 2016, this sample covers
home values ranging from $496,250 to $546,250. For each subsample, we experiment with different
maximum numbers of polynomials for functions g− and g+ in Equation (3).

The table shows that loans just above the cutoff are more likely to be included in TBA-ineligible
MBS than loans right below the cutoff. Although magnitudes of estimates are slightly different
across specifications, the estimates show that borrowers purchasing homes just above the cutoff are
more likely to originate high-balance loans, some of which will be included in TBA-ineligible MBS.
With our preferred specification (column (3)), the probability to be included in TBA-ineligible MBS
increases by 6 percentage points for loans just above the cutoff. This result is consistent with panel
(a) of Figure 6, which shows a discrete jump in the probability by a similar magnitude at the cutoff.
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Table 1: First-Stage Results for Loans near Cutoff 1: This table display estimates of coefficient
α in Equation (3). Columns (1)–(3) are for the subsample of loans with home values within the
window of $50,000 around the cutoff. Columns (1)–(3) are for specifications with up to first-,
second-, and third-degree polynomials, respectively. Columns (4)–(6) are for the subsample of
loans with home values within the window of $25,000 around the cutoff. Columns (4), (5), and
(6) are for specifications with up to first-, second-, and third-degree polynomials, respectively. All
specifications include State x Lender x Month Fixed effects and control variables described in the
main text. Standard errors are clustered at the level of State x Lender x Month.

Home Value: 1.25xCLL±$50K Home Value: 1.25xCLL±$25K

(1) (2) (3) (4) (5) (6)
Polynomial=1 Polynomial=2 Polynomial=3 Polynomial=1 Polynomial=2 Polynomial=3

1[hi > h∗t(i)] 0.059∗∗∗ 0.040∗∗∗ 0.060∗∗∗ 0.026∗∗∗ 0.061∗∗∗ 0.088∗∗∗

(17.52) (9.08) (10.02) (5.98) (8.89) (9.64)

STATExMONTHxSELLER FE Y Y Y Y Y Y
Other Controls Y Y Y Y Y Y

N. Obs. 78,535 78,535 78,535 37,891 37,891 37,891
Adj. R2 0.22 0.22 0.22 0.16 0.16 0.16

Next, Table 2 displays the result from the second-stage regression. The table shows that the
estimated effects of TBA eligibility on the mortgage rate are mostly similar across specifications.
Our preferred estimate (Columns (3)) shows that TBA eligibility reduces the mortgage rate by
around 40 basis points for loans near the national CLL. With the first-stage regression, we found
that the probability to be included in TBA-eligible MBS increases by 6 percentage points for loans
just above the cutoff. Then the second-stage estimate of 40 basis points implies that mortgage rates
are higher for loans just above the cutoff by 2.4 basis points than loans just below the cutoff, which
is consistent with the magnitude of the discrete jump shown in panel (b) in Figure 6.

Note that the estimate of 40 basis points does not measure the difference in mortgage rates
between conventional conforming loans (not larger than the national CLL) and high-balance loans.
Figure 2 shows that the about 65 percent of high-balance loans are still included in TBA-eligible
MBS. Thus, the average rate spread between conventional conforming loans and high-balance loans
should be about 14 basis points (= 0.35 × 40 basis points).15

15The actual spread between the two types of loans is time-varying. In fact, Vickery and Wright (2013) report that
the spread was around 30 basis points in the beginning of 2009 and decreased to around 10 basis points by 2011.
Our estimate of 14 basis points for the spread is the average across our sample period, which ranges from 2009 to
mid-2018.
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Table 2: Second-Stage Results for Loans near Cutoff 1: This table display estimates of
coefficient β in Equation (4). Columns (1)–(3) are for the subsample of loans with home values
within the window of $50,000 around the cutoff. Columns (1)–(3) are for specifications with up to
first-, second-, and third-degree polynomials, respectively. Columns (4)–(6) are for the subsample
of loans with home values within the window of $25,000 around the cutoff. Columns (4), (5), and
(6) are for specifications with up to first-, second-, and third-degree polynomials, respectively. All
specifications include State x Lender x Month Fixed effects and control variables described in the
main text. Standard errors are clustered at the level of State x Lender x Month.

Home Value: 1.25xCLL±$50K Home Value: 1.25xCLL±$25K

(1) (2) (3) (4) (5) (6)
Polynomial=1 Polynomial=2 Polynomial=3 Polynomial=1 Polynomial=2 Polynomial=3

N̂oTBA 0.310∗∗∗ 0.275∗∗ 0.398∗∗∗ 0.521∗∗∗ 0.321∗∗ 0.321∗∗∗

(6.02) (2.51) (3.74) (2.83) (2.57) (2.69)

STATExMONTHxSELLER FE Y Y Y Y Y Y
Other Controls Y Y Y Y Y Y

N. Obs. 77,898 77,898 77,898 37,565 37,565 37,565
Adj. R2 0.87 0.87 0.86 0.86 0.87 0.87

Differences in Prepayments An important identifying assumption in our IV strategy is that
unobserved characteristics correlated with mortgage rates are smooth at the cutoff. There is no
direct way to test whether this assumption is true, but our data allow us to test it indirectly with
ex-post prepayments. Because mortgages in our sample are guaranteed by the GSEs, default risks
are viewed just as a source of prepayment risks from an MBS investor’s perspective, and our ex-post
prepayment measures include prepayments due to defaults.

We measure the ex-post prepayment by whether a loan was paid off, from an MBS investor’s
perspective, by the n-th month since the origination for n ∈ {24, 36, 48, 60, 72, 84}. Using these
dummy variables as dependent variables, we estimate regressions similar to Equation (3) but with
realized prepayment as the dependent variable. Because the loans in our sample are originated in
2009 or later, we only consider prepayment outcomes up to the 84th month since origination. More-
over, when considering whether a loan was paid off by the n-th month, we estimate the regression
only with loans that could reach the loan age of n months without being paid off as of September
2018, when the latest prepayment data are available. For example, for n = 48, we exclude loans
originated after September 2014 because the maximum loan age for such a loan would be 47 in
September 2018, when the most recent performance data are available.

After estimating the regression for each n, we calculate the residual rate of prepayment by
loan age n by removing variation accounted for by Ziγ + ξs(i)×l(i)×t(i). We then plot the residual
rate of prepayment against the difference between the home value and the national CLL in Figure
7. The figures show no systematic changes in prepayment at the cutoff across all prepayment
measures. Compared with the two panels in Figure 6, whose patterns lined up with each other, the
patterns shown in Figure 7 do not seem to have any systematic relationships with the change in the
probability of being included in a TBA-ineligible MBS shown in panel (a) of Figure 6. Therefore,
this finding indicates that the discontinuity in mortgage rates at the cutoff is unlikely to be driven
by changes in unobserved characteristics at the cutoff.
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Figure 7: Prepayment Probabilities around Cutoff 1: These figures plot the residual probabil-
ity that a loan is completely paid off by different loan ages in terms of months since origination. The
x-axis represents the home value associated with each loan relative to the cutoff in thousand dol-
lars. The residual variables are obtained by removing variation in corresponding original variables
accounted by observable loan characteristics after running regressions given by Equation (3) with
the original variables as dependent variables (Ziγ + ξs(i)×l(i)×t(i)). Each dot in the plot represents
the average value of each residual variable for each bin of the size of $2,500.
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In addition, regression estimates reported in Table 3 show that there are no discontinuities in
ex-post prepayments at the cutoffs. In the Appendix, Figure 16 and Table 10 show similar patterns
with an alternative measure of ex-post prepayments, which is the ratio of original balance paid off
by loan age n. This measure captures partial payoffs, whereas the original measure only captures
complete payoffs. This set of evidence suggests that the estimated impact on the mortgage rate is
unlikely to reflect differences in unobservables around the cutoff.
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Table 3: Regression Results for Prepayment Probabilities (Cutoff 1): This table dis-
plays the estimates of the regression similar to Equation (3), but where dependent variables are
the dummy variable that is equal to one if a loan is completely paid off by loan age n for
n ∈ {24, 36, 48, 60, 72, 84}. The maximum degree of polynomials included in the regressions are
two for each regression. For all columns, we used the subsample of loans with corresponding home
values within the window of $50,000 around the cutoff. For each column, we further restricted the
subsample to loans that were originated at least n months before the most recent month available
in the data (2018m9). All specifications include State x Lender x Month Fixed effects and control
variables described in the main text. Standard errors are clustered at the level of State x Lender x
Month.

(1) (2) (3) (4) (5) (6)
By Age 24 By Age 36 By Age 48 By Age 60 By Age 72 By Age 84

1[hi > h∗t(i)] -0.005 -0.020 -0.011 -0.034 -0.050 -0.021
(-0.27) (-0.86) (-0.41) (-1.20) (-1.59) (-0.69)

hi -0.000 0.004∗∗ 0.003 0.000 0.000 0.000
(-0.16) (2.11) (1.24) (0.16) (0.19) (0.21)

1[hi > h∗t(i)]× hi 0.001 -0.004 -0.002 0.003 0.007 0.001
(0.29) (-0.89) (-0.54) (0.53) (1.31) (0.22)

STATExMONTHxSELLER FE Y Y Y Y Y Y
Other Controls Y Y Y Y Y Y

N. Obs. 35,443 29,761 25,066 20,564 15,614 12,434
Adj. R2 0.14 0.20 0.24 0.25 0.20 0.09

Exogenous Variables around the Cutoff An identifying assumption with the regression dis-
continuity design is that the sample is selected randomly around the cutoff. A way to test for a
random selection is to test whether exogenous variables exhibits any discrete jumps at the cutoffs.
Figure 8 plot the residual values of exogenous loan characteristics against the difference between
the home appraisal value and 125 percent of the national CLL. We consider exogenous loan char-
acteristics included in Zi in Equations (3) and (4). The figure shows that there is no noticeable
jump in any of the four variables. In appendix, Table 11 also confirms that there is no statistically
significant jump at the cutoff for any of the four variables.
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Figure 8: Exogenous Variables around Cutoff 1: The figures plot the residual values of ex-
ogenous loan characteristics against home values. The residual values are obtained by removing
variation accounted by the fixed effects (ξs(i)×l(i)×t(i)) after running regressions given by Equation
(3) with the exogenous loan characteristics as dependent variables. Each dot in the plot represents
the average value of each residual variable for each bin of the size of $2,500.
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5.2 Loan-To-Value 105

In the previous section, we showed that TBA eligibility reduces mortgage rates for loans near the
national CLL. In this subsection, we similarly estimate the effect of TBA eligibility on mortgage
rates for loans with LTVs near 105.

As shown by panel (b) in Figure 3, there is bunching at LTV of 105, and origination shares for
LTVs above 105 seems to be discretely lower than origination shares for LTV right below 105. This
discontinuity in the distribution of LTV at origination poses a challenge to an identification strategy
that utilizes the cutoff of LTV 105. Those who originate loans at or right below the LTV 105 might
have different unobserved characteristics from those who originate loans just above the cutoffs. Thus
difference in the mortgage rates around the cutoff may be accounted for by the potential difference
in unobserved characteristics.

We also address this problem with an instrument variable strategy, which utilizes an alternative
cutoff based on the ending balance of the original loan that preceded the refinanced HARP loan.
When refinancing into a HARP mortgage, the borrower needs to pay a closing cost. This cost varies
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across lenders and can be thousands of dollars. A borrower can roll the closing cost into the new
balance, which can make the new loan balance higher than the ending balance of the preceding
loan. Freddie Mac imposes a limit on how much of the closing cost can be included in the balance of
the new HARP loan: the lesser of 4% of the balance of the preceding loan and $5,000.16 This rule
restricts the size of the HARP loan to a limit that depends on the ending balance of the preceding
loan. As a result, the maximum LTV of the new HARP loan is a function of the ending balance of
the preceding loan:

PredLTVi ≡
min{PrevBalancei × 1.04, P revBalancei + 5000}

UpdatedHomeV aluei
× 100 ≥ LTVi.

We argue that PredLTVi predicts the probability that a HARP loan would be included in a
TBA-ineligible MBS. If PredLTVi ≤ 105, then we expect that the LTV of a new HARP loan
securitized by Freddie Mac is likely to be not greater than 105. Otherwise, the probability that
the LTV of a HARP loan is greater than 105 will increase as PredLTVi increases beyond 105.
Because any HARP loan with the LTV greater than 105 must be included in a TBA-ineligible
MBS, we expect that the relationship between PredLTVi and the probability of being included in
a TBA-ineligible MBS changes discontinuously at PredLTVi of 105.

Loan-level data from Freddie Mac allow us to calculate PredLTVi for each HARP origination.
UpdatedHomeV aluei can be obtained by multiplying the new LTV and the new loan amount for
each HARP origination. Since the data provide a link between each HARP loan and its preceding
loan, we obtain PrevBalancei by looking at the outstanding balance of the preceding loan in the
month right before HARP refinancing.

For this analysis, we impose the following additional sample selection criteria to keep the sample
relatively homogeneous. First, we only keep HARP loans securitized by Freddie Mac because Fannie
Mae did not have similar restrictions on closing costs. Second, we keep only the loans for owner-
occupied single-family houses as we did for our analysis for loans near the national CLL in Section
5.1. Moreover, we exclude any loans with second mortgages (by comparing combined LTV and
original LTV) or any loans with mortgage insurance.17

Figure 9 suggests that the density of PredLTVi is smooth at the cutoff of 105 (panel (b)) unlike
the density of LTVs of HARP loans (panel (a)). The smooth density of PredLTVi suggests that
there is no systematic manipulation of PredLTVi, which satisfies a key condition for identification.

16This information on the limit on how much the closing cost can be included in the new balance is provided on
page 15 of the evaluation report by the Office of Inspector General of the Federal Housing Finance Agency on the
HARP program. The link to the report is: https://www.fhfaoig.gov/Content/Files/EVL-2013-006.pdf.

17HARP allowed borrowers to refinance without mortgage insurance although their updated LTVs are greater than
80. However, there are a small group of HARP borrowers who still had mortgage insurance.
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Figure 9: Sorting around the Cutoffs: These figures plot loan-level density for HARP origina-
tions securitized by Freddie Mac. Panel (a) plots the density of the LTV at origination for a HARP
loan. Panel (b) plots the density of PredLTVi. The data source of both figures is the loan-level
data from Freddie Mac.
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Graphical Examination Panel (a) of Figure 10 displays the relationship between PredLTVi

and the probability of being included in a TBA-ineligible MBS. As before, we calculate the residual
probability of being included in a TBA-ineligible MBS with the following regression:

NoTBAi = α1[PredLTVi > 105] + g−(PredLTVi; θ0) + g+(PredLTVi; θ1) (5)

+ Ziγ + ξzip3(i)×l(i)×t(i) + εi

The dependent variable, NoTBAi is a dummy variable that is equal to one if loan i is included
in TBA-eligible MBS. Note that in this setting, a HARP loan with the initial LTV above 105
is not allowed to be included in TBA-eligible MBS. The dummy variable, 1[PredLTVi > 105]

is equal to one if a HARP loan i’s PredLTV is above 105. Similarly to the analysis for loans
near the national CLL, we include up to the third-degree polynomials of PredLTVi interacted with
1[PredLTVi > 105],which are captured by the two functions g− and g+. Next, Zi include other loan
characteristics: credit score, whether a loan is originated by a broker, whether a loan is originated
by a correspondent lender, and the mortgage rate for the previous loan. Lastly, 18 ξzip3(i)×l(i)×t(i)

refers to the fixed effects for a combination of first three digits of zipcodes, mortgage lenders, and
loan origination months.

After estimating Equation 5, we calculate the residual value of NoTBAi by removing variation
in the probability accounted for by loan characteristics Zi and fixed effects. The figure shows that

18Loan characteristics in Zi in Equation 5 are not exactly the same as loan characteristics included for the analysis
for loans near the national CLL. This is in part because different data sets are used for the analyses for loans near
the national CLL and HARP loans. For example, a borrower’s income is missing for the data set for HARP loans,
whereas we can infer a borrower’s income in the data set for loans near the national CLL. Thus, we do not include
the loan-to-income ratio in Equation 5.
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although there is no jump at the cutoff, the slope changes discontinuously, which results in a kink
at the cutoff. As PredLTVi approaches to 105 from below, the slope of the graph is almost flat. In
contrast, as PredLTVi moves away from the cutoff value, the slope of the graph becomes suddenly
much steeper, indicating that the same amount of an increase in PredLTVi makes the LTV of
HARP loan much more likely to be greater than 105. Based on this pattern, it is evident that there
is a kink at the cutoff in the relationship between PredLTVi and the probability of being included
in a TBA-ineligible MBS.

Panel (b) of Figure 10 displays the relationship between PredLTVi and residual mortgage rates
of HARP loans. As in panel (a), we calculate the residual rate by removing variation in mortgage
rates accounted for by loan characteristics Zi and the fixed effects ξzip3(i)×l(i)×t(i). As in panel (a),
there is also a kink in the relationship between PredLTVi and the residual mortgage rate at the
cutoff, which suggests that the change in the relationship with the residual mortgage rate at the
cutoff is correlated with TBA eligibility.

An important pattern shown by Figure 10 is that there is a kink instead of a jump at the cutoff,
whereas there is a jump at the cutoff for loans near the national CLL (displayed in Figure 6). The
main reason for the pattern is that PredLTVi is calculated based not on actual closing costs but on
the largest possible closing costs that can be rolled into a HARP balance. In contrast, the appraised
home value, which is the IV used for the analysis for loans near CLLs, is the actual home value, not
the maximum possible home value. If closing costs for HARP ends up being smaller than the upper
limit, then LTVs for new HARP loans will be below PredLTVi. Thus, if closings cost are usually
below the upper limit, then actual LTVs for HARP loans will not be very different regardless of
whether PredLTVi is below or above the cutoff of 105. In that case, there would not be a jump
at the cutoff as shown in Figure 10. However, as PredLTVi increases away from the cutoff, even
closing costs smaller than the upper limit will be more likely to result in actual LTVs for HARP
loans higher loan 105, which will lead to the upward slopes for PredLTVi above 105 as shown in
Figure 10.

Another notable pattern is that the relationships between PredLTVi and the two variables are
non-linear for values of PredLTVi away from the cutoff. For example, the slope for the mortgage rate
in panel (b) also seems to changes for PredLTVi near -5. Thus, it is important to control for these
non-linear relationship by including higher-degree polynomials especially when using a subsample
with nonlinearity. That is because the linear terms by themselves with the larger subsample cannot
estimate the change in the slopes in the relationship between PredLTVi and the mortgage rate at
the cutoff.
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Figure 10: TBA-eligible Probabilities and Mortgage Rates (Cutoff 2): The figures plot the
residual probability to be included in TBA-ineligible MBS (panel (a)) and the residual mortgage
rate (panel (b)) against PredLTVi. The residual variables are obtained by removing variation in
corresponding original variables accounted by observable loan characteristics after running regres-
sions given by Equation (5) with the original variables as dependent variables (Ziγ+ξzip3(i)×l(i)×t(i)).
Each dot in the plot represents the average value of each residual variable for each bin of the size
of 0.5.
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Regression Specifications Figures 10 suggests that the standard regression discontinuity design
will not work well in this setup because there is no jump in the probability of being included in
a TBA-ineligible pool at the cutoff. Instead, we use the regression kink design, which estimates
the treatment effect by estimating changes in the slopes at the cutoff in the relationship between a
running variable and dependent variable. In this empirical design, we run a two-stage-least-square
regression with the first- and second-stage regressions as follows:

NoTBAi = α0PredLTVi + α1PredLTVi × 1[PredLTVi > 105] (6)

+ g−(PredLTVi; θ0) + g+(PredLTVi; θ1) + Ziγ + ξzip3(i)×l(i)×t(i) + εi

Ratei = β0PredLTVi + β1 ̂NoTBAi (7)

+ g−(PredLTVi;φ0) + g+(PredLTVi;φ1) + Ziδ + χzip3(i)×l(i)×t(i) + ωi

In this empirical design, Equations (6) and (7) are the first- and second-stage regressions, respec-
tively. In Equation (6), α1 measures the change in slopes at the cutoff. The variable PredLTVi ×
1[PredLTVi > 105], which only shows up in Equation (6), serves as an IV. The coefficient β1
measures the treatment effect of being included in a TBA-ineligible MBS.

IV Regression Results First, we estimate the first-stage regression described by Equation (6).
Table 4 presents coefficient estimates for the first stage with six different specifications, which
measure how much slopes between PredLTVi and the probability to be included in TBA-ineligible

29



MBS changes at the cutoff. Columns (1)–(3) present estimates with the subsample with loans
with PredLTVi ∈ [95, 115], which has the window size of 10 around the cutoff of 105. Columns
(4)–(6) present estimates with the subsample with loans with PredLTVi ∈ [100, 110], which has
the window size of 5 around the cutoff of 105. For each subsample, we experiment with different
maximum numbers of polynomials for functions g− and g+ in Equation (6).

The table shows that the slope is more positive for PredLTVi above 105, which is consistent
with Figure 10. These estimates shows that a marginal increase in PredLTVi is much more likely to
result in a HARP loan with the LTV above 105 if PredLTVi is above 105. This result is consistent
with panel (a) of Figure 10, which shows a kink in the probability.

Table 4: First-Stage Results with Cutoff 2: This table display estimates of coefficients in
Equation (6). Columns (1)–(3) are for the subsample of loans with PredLTVi ∈ [95, 115]. Columns
(1)–(3) are for specifications with up to first-, second-, and third-degree polynomials, respectively
Columns (4)–(6) are for the subsample of loans with PredLTVi ∈ [100, 110]. Columns (4), (5), and
(6) are for specifications with up to first-, second-, and third-degree polynomials, respectively. All
specifications include Zip3 x Lender x Month Fixed effects and control variables described in the
main text. Standard errors are clustered at the level of Zip3 x Lender x Month.

PredLTV : [95,115] PredLTV : [100,110]

(1) (2) (3) (4) (5) (6)
Polynomial=1 Polynomial=2 Polynomial=3 Polynomial=1 Polynomial=2 Polynomial=3

PredLTV 0.014∗∗∗ -0.005∗∗∗ -0.023∗∗∗ 0.002 -0.014∗∗∗ 0.032∗∗∗

(37.75) (-4.01) (-8.22) (1.36) (-3.11) (2.95)
1[PredLTV > 105]× PredLTV 0.107∗∗∗ 0.284∗∗∗ 0.329∗∗∗ 0.205∗∗∗ 0.249∗∗∗ 0.089∗∗∗

(138.22) (114.31) (45.86) (79.25) (23.12) (3.52)

ZIP3xMONTHxSELLER FE Y Y Y Y Y Y
Other Controls Y Y Y Y Y Y

N. Obs. 67,466 67,466 67,466 26,473 26,473 26,473
Adj. R2 0.76 0.82 0.82 0.63 0.63 0.63

The second-stage regression results are reported in Table 5. Note that because the relationship
between PredLTVi and the mortgage rate are highly non-linear, the estimate can be misleading
withjust up to the first-degree polynomials. In Column (1), our point estimate is negative (but
statistically insignificant) although Figure 10 is indicative of at least a positive coefficient. Our
estimates become consistent with the figure as we include higher-degree polynomials (Columns (2)
and (3)) or as we use a narrower sample window (Columns (4)–(6)). When we use the smaller
sample window and include up to the third-degree polynomials (Column (6)), the point estimate
of the impact of TBA eligibility on mortgage rates is the largest but statistically insignificant
because the standard error of the estimate becomes very large with the third-degree polynomials
with a relatively small number of observations with the second subsample. Our preferred estimate
(Columns (3)) shows that TBA eligibility reduces the mortgage rate by 10 bps for HARP loans with
LTVs around 105.
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Table 5: Second-Stage Regression Results with Cutoff 2: This table display estimates of coef-
ficients in Equation (7). Columns (1)–(3) are for the subsample of loans with PredLTVi ∈ [95, 115].
Columns (1)–(3) are for specifications with up to first-, second-, and third-degree polynomials, re-
spectively Columns (4)–(6) are for the subsample of loans with PredLTVi ∈ [100, 110]. Columns
(4), (5), and (6) are for specifications with up to first-, second-, and third-degree polynomials, re-
spectively. All specifications include Zip3 x Lender x Month Fixed effects and control variables
described in the main text. Standard errors are clustered at the level of Zip3 x Lender x Month.

PredLTV : [95,115] PredLTV : [100,110]

(1) (2) (3) (4) (5) (6)
Polynomial=1 Polynomial=2 Polynomial=3 Polynomial=1 Polynomial=2 Polynomial=3

N̂oTBA -0.005 0.079∗∗∗ 0.075∗∗∗ 0.061∗∗∗ 0.067∗∗ 0.148
(-0.74) (7.73) (4.31) (5.14) (2.20) (0.73)

ZIP3xMONTHxSELLER FE Y Y Y Y Y Y
Other Controls Y Y Y Y Y Y

N. Obs. 66,632 66,632 98,754 26,107 39,900 39,900
Adj. R2 0.85 0.85 0.84 0.86 0.85 0.85

Differences in Prepayments To check whether there is a kink at the cutoff for the relationship
between PredLTVi and unobserved characteristics, we investigate whether the relationship between
PredLTVi and the ex-post prepayment changes at the cutoff. Similar to Figure 7, we also measure
the ex-post prepayment by whether a borrower paid off the loan by the n-th month since the
origination for n ∈ {24, 36, 48, 60, 72, 84}. Using these dummy variables as dependent variables, we
estimate regressions similar to Equation (5). Similarly to the earlier analysis for high-balance loans,
moreover, we also estimate the regression only with loans that could reach the loan age of n months
without being paid off as of September 2018, when the latest prepayment data are available. After
estimating the regression for each n, we calculate the residual rate of prepayment by loan age n by
removing variation accounted for by loan characteristics Zi and the fixed effects.
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Table 6: Regression Results for Prepayment Probabilities (Cutoff 2): This table dis-
plays the estimates of the regression similar to Equation (3), where dependent variables are
the dummy variable that is equal to one if a loan is completely paid off by loan age n for
n ∈ {24, 36, 48, 60, 72, 84}. The maximum number of polynomials included in the regressions are
three for each column. For all columns, we used the subsample of loans with PredLTVi between 100
and 110. For each column, we further restricted the subsample to loans that were originated at least
n months before the most recent month available in the data (2018m9). All specifications include
Zip3 x Lender x Month Fixed effects and control variables described in the main text. Standard
errors are clustered at the level of Zip3 x Lender x Month.

(1) (2) (3) (4) (5) (6)
By Age 24 By Age 36 By Age 48 By Age 60 By Age 72 By Age 84

1[PredLTV > 105] 0.004 -0.005 0.003 0.002 -0.009 -0.024
(1.51) (-1.54) (0.74) (0.27) (-0.80) (-1.12)

PredLTV -0.002 -0.002 -0.002 -0.003 -0.002 0.022∗∗

(-1.16) (-1.09) (-0.64) (-0.72) (-0.25) (2.17)
1[PredLTV > 105]× PredLTV 0.001 0.004 0.004 0.003 0.012 -0.019

(0.41) (1.41) (1.20) (0.56) (1.08) (-0.93)

ZIP3xMONTHxSELLER FE Y Y Y Y Y Y
Other Controls Y Y Y Y Y Y

N. Obs. 61,744 54,914 44,277 23,311 11,282 3,481
Adj. R2 -0.02 0.01 -0.00 0.00 -0.03 -0.06

The regression estimates are reported in Table 6, and we also plot the residual rate of prepayment
against PredLTVi in Figure 11. The table shows that any changes in the slopes are not statistically
significant. The figure is consistent with the results displayed by the table. It is apparent that no
systemic changes in the relationship between the ex-post prepayment and PredLTVi at the cutoff for
all measures of prepayment we considered. Therefore, this finding indicates that the discontinuity
in mortgage rates at the cutoff is unlikely to be driven by changes in unobserved characteristics at
the cutoff.
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Figure 11: Prepayment Probabilities around Cutoff 2: These figures plot the residual proba-
bility that a loan is completely paid off by different loan ages in terms of months since origination.
The residual variables are obtained by removing variation in corresponding original variables ac-
counted by observable loan characteristics after running regressions given by Equation (5) with the
original variables as dependent variables (Ziγ+ξzip3(i)×l(i)×t(i)). Each dot in the plot represents the
average value of each residual variable for each bin of the size of 0.5.
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In the Appendix, Figure 17 and Table 12 show similar patterns with an alternative measure of
ex-post prepayments, which is the ratio of original balance paid off by loan age n. This measure
captures partial payoffs, whereas the original measure only captures a complete payoff. This set of
evidence suggests that the estimated impact on the mortgage rate is unlikely to reflect difference in
unobservables around the cutoff.

Exogenous Variables around the Cutoff We also test for a random selection with respect to
exogenous variables. Figure 12 plot the residual values of exogenous loan characteristics against
PredLTVi. We consider exogenous loan characteristics were included in Zi in Equations (5). The
figure shows that there is no noticeable pattern in any of the four variables. In appendix, Table 13
report estimated coefficients for each dependent variable. Although the coefficient for the interaction
between 1[PredLTVi > 105] and PredLTVi is significant, the pattern is not robust to different
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specifications. In fact, the corresponding figure suggests that there is no noticeable pattern for
loans very close to the cutoff. In an alternative specification with only up to first- or second-degree
polynomials of PredLTVi or the smaller subsample, the coefficient becomes statistically insignificant
even at the 90% level.

Figure 12: Exogenous Variables around Cutoff 2: The figures plot the residual values of
exogenous loan characteristics against PredLTVi. The residual values are obtained by removing
variation accounted by the fixed effects (ξzip3(i)×l(i)×t(i)) after running regressions given by Equation
(5) with the exogenous loan characteristics as dependent variables. Each dot in the plot represents
the average value of each residual variable for each bin of the size of 0.5.

-5

0

5

10

15

-10 -5 0 5 10

Credit Score

-.02

-.015

-.01

-.005

0

.005

-10 -5 0 5 10

Broker Channel

-.02

-.01

0

.01

.02

.03

-10 -5 0 5 10

Correspondent Channel

-.2

-.1

0

.1

.2

-10 -5 0 5 10

Interest Rate for Prev Loan

5.3 Discussion

We have estimated the effect of TBA-eligibility on the mortgage rate, exploiting the two cutoffs that
determine TBA-eligibility. We found that TBA eligibility reduces the mortgage rate by 40 basis
points for loans near the national CLL and by 10 basis points for loans with LTVs near 105. The
difference in magnitudes of the estimates is consistent with the prediction from our model that the
option to trade in the TBA market is more valuable for loans with higher prepayment risks because
they are less likely to trade in SP.

A common criticism against empirical designs based on discontinuities estimating local treat-
ment effects is that the resulting estimate might be difficult to be extrapolated to the rest of the
population. This concern would apply to our setup if we estimated the impact on the mortgage
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rate using only one of the two cutoffs. However, the two cutoffs used in our empirical analysis are
at opposite ends of the spectrum of prepayment risks. Thus, the estimated impact on the mortgage
rates with the two cutoffs are likely to be close to the upper and lower bounds. Moreover, given the
model prediction that the benefit of TBA eligibility is higher for loans with higher prepayment risks,
we expect that the benefit of TBA-eligibility will fall between our two estimates for a majority of
loans, which are likely to have prepayment risks toward the middle of the distribution of prepayment
risks.

6 Effects on Refinancing Behavior and Consumer Spending

In the previous section, we have established that loans included in TBA-eligible pools have lower
interest rates. Because TBA eligibility impacts the price, we expect that it would impact the
quantity, or in other words, borrowers’ demand for mortgages. In this section, we specifically
investigate whether TBA eligibility affects borrowers’ refinancing behavior. Previous research such
as Agarwal et al. (2017) and Abel and Fuster (2018) find that refinancing is important for monetary
policy transmission because consumer spending increases subsequent to refinancing. Thus, we also
investigate how TBA eligibility affects consumer spending as well.

For this analysis, we focus only on refinancing behavior of borrowers with remaining loan balances
near the national CLL. We do not investigate refinancing behavior with LTVs near 105 because of
data limitations. Our data provides exact information about evolution of a borrower’s loan balance
over time. In contrast, we do not have good information about the evolution of updated LTV.
Because our analysis hinges on differences in borrowers’ behavior at the cutoffs, it is important to
observe any differences in a borrower’s decision to refinance depending on whether his updated LTV
is above or below the cutoff. However, our data only allows us to observe updated LTVs only when
a borrower refinances into a HARP loan, and we do not observe updated LTVs for borrowers who
do not refinance at a given time.

6.1 Refinancing and National CLL

The period after when the GSEs were allowed to purchase and securitize high-balance loans (since
March 2008) has experienced historically low interest rates, which resulted in a refinancing boom.
We investigate whether TBA eligibility affects the refinancing decision of a borrower with a remain-
ing loan balance near the national CLL after 2008 when the GSEs purchased high-balance loans.
As in the earlier analysis on mortgage rates, we do not consider 2008 because there was significant
uncertainty regarding TBA eligibility of high-balance loans.

A borrower seeking to refinance with a remaining balance above the national CLL faces the
following trade-off: refinancing now into a high-balance loan with a higher rate versus refinancing
later into a conventional conforming loan with a lower rate.19 Having the trade-off in mind, we

19A borrower could always refinance into a conventional conforming loan if he makes a sufficient lump-sum mortgage
payment. However, this possibility is not very likely.
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investigate whether the refinancing probability increases for borrowers with remaining loan balances
right below the national CLL relative to those with remaining balances right above the cutoff. We
will interpret the difference in the refinancing probabilities as demand response to the spread in
mortgage rates around the cutoff.

Another possibility is that a borrower cannot refinance into a high-balance loan because a higher
rate associated with a high-balance loan makes debt-to-income (DTI) ratio binding. A DTI ratio
is calculated as the monthly mortgage payment divided by a borrower’s income. Thus, the larger
mortgage rate is, the higher DTI is. Thus, even if a borrower would like to refinance into a high-
balance loan, a lender might not be willing to extend a loan to the borrower because of the binding
DTI. In this case, we would also expect an increase in the refinancing probability when a borrower’s
remaining balance decreases to right below the national CLL because of higher rates associated with
high-balance loans. For our purpose, it is not very important to distinguish different reasons why
refinancing volumes increase abruptly when the remaining mortgage balance reaches the national
CLL, as long as the increase is due to the rate differential between conventional conforming and
high-balance loans.

Sample Selection and Data For this analysis, we restrict the sample to pairs of a loan and a
month with 30-year FRMs that were originated in 2007 or later with remaining balances greater
than the national CLL at any point in March 2009 or later. Many of these loans in the sample were
not securitized by the GSEs, including jumbo loans and loans kept on lenders’ portfolios, unlike
our analysis on mortgage rates in Section 5. Moreover, we only consider borrowers in high-cost
counties where the Economic Stimulus Act of 2008 increased the CLL at least by $50,000. This
geographical sample restriction is important because we would like to study a borrower’s trade-off
between a conventional conforming loan and high-balance loan, the latter of which is available only
in high-cost counties.

We further restrict the sample to loan-month pairs with remaining balances within $50,000
around the national CLL at some point in our sample period (January 2009 or later). We exclude
borrowers with adjustable-rate mortgages (ARMs) because their incentives to refinance are different
from those with FRMs. ARM borrowers often refinance to avoid higher rates after the end of the
initial period with fixed teaser rates, whereas FRM borrowers refinance to take advantage of lower
current rates. Moreover, we only consider loans originated in 2007 or later because loans that were
originated earlier and remain in the sample in our sample period may cause a selection bias.

For this analysis, we use the CRISM data, which provide loan-level mortgage performance
information matched to borrower-level credit records. The main advantage of using CRISM over
a typical loan-level performance data is that CRISM allows us to tell apart different reasons for a
voluntary payoff of a mortgage such as plain refinancing, cash-out refinancing, moving to a different
home, etc. Moreover, the data also provide information about a borrower’s other credit activities
such as auto financing, etc. In investigating the effects on consumption, we will focus on auto
financing, which is used to purchase a car.
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Another desirable feature of the CRISM data is that the data provide information for loans
that are not securitized by the GSEs. Because GSEs were allowed to purchase high-balance loans
starting in 2008, many loans with remaining balance above the national CLL in 2009 or later are
jumbo loans originated before the high-cost loan limits were introduced and were not able to be
purchased by GSEs. Hence, our sample includes many cases where the original loans were not
securitized by the GSEs and were either packaged into private-label mortgage securities or kept on
lenders’ balance sheets.

Empirical Design We estimate the following regression:

yit = α1[balit ≤ CLLt] + g+(balit; θ0) + g−(balit; θ1) + Zitγ + ξzip(i)×t + εi. (8)

Equation (8) looks quite similar to Equation (3), which was used for earlier analyses. Whereas the
unit of analysis is a loan at the time of its origination in the previous analyses, the unit of analysis
here is a loan-month pair. Thus, the dependent variable yit has two subscripts: i for each loan and
t for each month. On the right hand side, balit refers to the remaining balance of loan i as of time
t, and 1[balit ≤ CLL] is a dummy variable that is equal to one if the remaining balance of loan i in
time t is not greater than the national CLL at that time. Functions g+ and g− give polynomials of
balit depending on whether or not balit is greater than CLLt, respectively. Vector Zit includes the
following loan characteristics: loan age, the purpose of the loan (refinance or purchase), whether a
loan is kept on a lender’s balance sheet, whether a loan is securitized by a GSE, updated estimated
LTV, the fraction of the initial balance paid off as of time t, original loan balance, updated credit
score, mortgage interest rate, LTV at origination, whether the loan is a first mortgage, whether the
borrower is an owner-occupant, whether there is a prepayment penalty, whether the prepayment
penalty period expired by time t, whether there is a delinquency in last twelve months, whether
the loan is an interest-only loan, and whether the interest-only period expired by time t. Lastly,
ξzip(i)×t refers to the fixed effects at the level of loan i’s zipcode and time t. Because the CRISM
data do not provide identities of lenders or servicers, we are not able to include lender or servicer
characteristics unlike in the previous analyses on mortgage rates.

The dependent variable, yit, is an indicator variable that equals one if loan i is refinanced at
time t. We consider the following two types of refinancing separately: plain refinancing and cash-out
refinancing. Plain refinancing refers to refinancing without a significant increase in the loan balance.
Since the loan balance could increase because of the closing cost of a new loan, we view refinancing
as plain refinancing if the loan balance does not increase more than 5% of the ending balance of the
previous loan. Cash-out refinancing is refinancing in which a borrower increases the loan balance
by more than 5% of the ending balance of the previous loan. We expect that the probability of
plain refinancing increases discontinuously when the remaining balance of a loan is right below the
national CLL because a borrower can refinance into a conventional conforming loan without making
additional mortgage payments. In contrast, we do not expect to see a similar pattern for cash-out
refinancing because cash-out refinancing for a borrower with the remaining balance right below the
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national CLL will make the new loan balance greater than national CLL.

Graphical Examination Before presenting estimated coefficients, we first visually examine the
relationship between the remaining loan balance and the probability of plain and non-plain refi-
nancing. Similar to earlier analyses on mortgage rates, we also run the regression described in
Equation (8) and calculate the residual probability of refinancing a loan by removing the variation
in the dependent variable accounted for by loan characteristics Zi and the fixed effects. Figure
13 displays the relationship between the remaining loan balance and the probability of plain and
non-plain refinancing in panels (a) and (b), respectively. Panel (a) clearly shows that there is a
jump in the probability of plain refinancing at the CLL. A borrower with a remaining balance just
below the national CLL is about 0.50 pp more likely to plain-refinance than a borrower with a
remaining balance slightly above the cutoff. Given that the average monthly probability to pay off
the loan is 1.1 percent, the difference of 0.50 pp in the probability of plain refinancing at the cutoff
is economically significant. As the remaining balance increases away from the national CLL, the
probability does not change very much. In contrast, the probability decreases fast as the remaining
loan balance decreases away from the national CLL. This pattern suggests that many borrowers
wait for their loan balances to reach below the CLL to refinance into mortgages not greater than the
national CLL. It also suggests that very few borrowers make extra mortgage payments to refinance
into loans smaller than the national CLL.

In contrast, panel (b) shows that the probability of cash-out refinancing does not exhibit a
similar pattern around the national CLL. Because cash-out refinancing of a loan with a remaining
balance right below the cutoff will still make a borrower refinance into a high-balance loan, there is
no reason for a discrete jump at the national CLL.
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Figure 13: Monthly Probability of Plain and Cash-out Refinancing around the National
CLL: This figure plots the relationship between the residual monthly probabilities of plain and cash-
out refinancing and the remaining loan balance. The residual probability is obtained by removing
variation in the original variable accounted for by observable characteristics Zit and fixed effects
ξzip(i)×t after running the regression given by Equation (8). Each dot represents the average value
for each bin with the size of $2,500.
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Regression Estimates Table 7 shows the results of regression (8) with plain refinancing as the
dependent variable. Columns (1)–(3) show estimates with the sample consisting of pairs of borrower
and months with remaining loan balances within the window of $50,000 around the national CLL.
Columns (4)–(6) show estimates with the window of $25,000 around the national CLL. Regardless
of the number of polynomials included and the size of the sample window, we find a statistically
significant jump in the probability of plain refinancing at the cutoff. The coefficient estimates are
around 0.50 pp, which is consistent with Figure 13.
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Table 7: Monthly Probability of Plain Refinancing around the National CLL: The table
displays the estimated coefficients of the regression given by Equation (8) with plain refinancing as
the dependent variable. Columns (1)–(3) are for the subsample of loan-month pairs with remaining
mortgage balances within the window of $50,000 around the cutoff. Columns (1)–(3) are for spec-
ifications with up to first-, second-, and third-degree polynomials, respectively. Columns (4)–(6)
are for the subsample of loan-month pairs with remaining mortgage balances within the window of
$25,000 around the cutoff. Columns (4), (5), and (6) are for specifications with up to first-, second-,
and third-degree polynomials, respectively. All columns include the Zipcode × Month fixed effects
and the control variables described in the main text. The standard errors are clustered at the level
of Zipcode × Month.

Larger Window Small Window

(1) (2) (3) (4) (5) (6)
Polynomial=1 Polynomial=2 Polynomial=3 Polynomial=1 Polynomial=2 Polynomial=3

1[bali ≤ CLL] 0.0048∗∗∗ 0.0048∗∗∗ 0.0051∗∗∗ 0.0040∗∗∗ 0.0048∗∗∗ 0.0058∗∗∗

(13.90) (9.75) (7.86) (8.83) (7.15) (6.42)
bali 0.0000 -0.0001∗∗∗ -0.0001∗∗ -0.0001∗∗∗ -0.0002∗∗∗ -0.0003∗

(0.48) (-3.28) (-2.42) (-4.78) (-2.62) (-1.67)
1[bali ≤ CLL]× bali 0.0002∗∗∗ 0.0004∗∗∗ 0.0007∗∗∗ 0.0003∗∗∗ 0.0008∗∗∗ 0.0016∗∗∗

(12.65) (7.20) (5.11) (8.19) (5.71) (4.87)

ZIPxMONTH FE Y Y Y Y Y Y
Other Controls Y Y Y Y Y Y

N. Obs. 3,684,465 3,684,465 3,684,465 1,422,031 1,422,031 1,422,031
Adj. R2 0.013 0.013 0.013 0.025 0.025 0.025

Table 8 shows estimates for regressions with cash-out refinancing as the dependent variable.
Regardless of the size of the sample window, the main coefficient becomes statistically insignificant
with polynomials of degree two or higher.
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Table 8: Monthly Probability of Cash-out Refinancing around the National CLL: The
table displays the estimated coefficients of the regression given by Equation (8) with cash-out
refinancing as the dependent variable. Columns (1)–(3) are for the subsample of loan-month pairs
with remaining mortgage balances within the window of $50,000 around the cutoff. Columns (1)–(3)
are for specifications with up to first-, second-, and third-degree polynomials, respectively. Columns
(4)–(6) are for the subsample of loan-month pairs with remaining mortgage balances within the
window of $25,000 around the cutoff. Columns (4), (5), and (6) are for specifications with up
to first-, second-, and third-degree polynomials, respectively. All columns include the Zipcode ×
Month fixed effects and the control variables described in the main text. The standard errors are
clustered at the level of Zipcode × Month.

Larger Window Small Window

(1) (2) (3) (4) (5) (6)
Polynomial=1 Polynomial=2 Polynomial=3 Polynomial=1 Polynomial=2 Polynomial=3

1[bali ≤ CLL] -0.0004∗∗∗ -0.0003 -0.0002 -0.0003∗ 0.0001 -0.0002
(-2.77) (-1.41) (-0.77) (-1.79) (0.49) (-0.65)

bali -0.0000∗∗ -0.0000 -0.0000 -0.0000 0.0001∗ -0.0001∗

(-2.49) (-0.83) (-0.48) (-0.42) (1.90) (-1.78)
1[bali ≤ CLL]× bali -0.0000 0.0000 0.0000 0.0000 0.0000 0.0002∗

(-1.54) (0.62) (0.95) (0.04) (0.06) (1.70)

ZIPxMONTH FE Y Y Y Y Y Y
Other Controls Y Y Y Y Y Y

N. Obs. 3,684,465 3,684,465 3,684,465 1,422,031 1,422,031 1,422,031
Adj. R2 -0.008 -0.008 -0.008 -0.014 -0.014 -0.014

The relationship between the remaining loan balance and the probability of plain refinancing
shows that a borrower typically wait until the remaining loan balance falls below the national CLL.
As discussed earlier, that is either because a borrower would like to take advantage of a lower rate
with a conventional conforming loan or because a higher mortgage rate with a high-balance loan
makes the DTI binding.

How long would a borrower have to wait for the remaining balance to reach the national CLL?
In our sample, a borrower with a remaining balance of the national CLL plus $25,000 has to wait
32 months to reach the national CLL. For a borrower with a remaining balance of the national
CLL plus $10,000, it takes about 17 months to reach the national CLL. Even for a borrower with a
remaining balance of the national CLL plus $5,000, it takes about 11 months. This finding suggests
that the rate spread between high-balance and conforming loans due to TBA-eligibility results in a
significant delay in a borrower’s refinancing.

6.2 Consumer Spending

Previous research such as Agarwal et al. (2017) and Abel and Fuster (2018) find that consumer
spending increases subsequent to refinancing. In the previous subsection, we found that TBA
eligibility delays a borrower’s refinancing decision. Then a natural question is whether and how
much a borrower’s consumption behavior is affected by TBA eligibility. Although our data do not
provide direct information about a mortgage borrower’s spending, CRISM sheds light on part of
consumption that typically involves financing such as an automobile purchase. For this reason, a
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number of papers have relied on consumer credit data and used new auto loan originations to study
durable consumption.20

In this subsection, we first investigate whether borrowers in our sample increase their auto loan
originations subsequent to refinancing. Then we investigate whether TBA eligibility affects auto
originations by estimating how much auto originations increase once borrowers’ remaining mortgage
balances fall below the national CLL.

6.2.1 Consumer Spending Subsequent to Refinancing

To examine whether auto loan originations increase after refinancing, we construct our estimation
sample in the following way. First, we include borrowers who ever plain-refinanced within the
estimation sample used to study a borrower’s refinancing decision in Section 6.1. We then follow
the borrowers for twelve months: six months before and after plain refinancing.

With this estimation sample, we estimate the following regression:

NewAutoAmtit = Σ5
t′=−6βt′1[t = t∗i + t′] + Zitγ + ξzip(i)×t + εi. (9)

The dependent variable NewAutoAmtit denotes a new auto loan amount. If borrower i does not
originate a new auto loan in time t, then the variable is equal to zero. If he does, then the variable
is equal to the origination amount. This variable measures changes not only in the extensive margin
(whether a borrower originates a new auto loan) but also in the intensive margin (whether a borrower
takes out a larger auto loan possibly to buy a more expensive car). CRISM does not tell directly
whether or how much a borrower takes out a new auto loan in a given month. Instead, we observe
each borrower’s outstanding auto loan balances in each month. We assume that a borrower takes
out a new auto loan if his outstanding auto loan balance increases by more than $3,000 and if the
number of outstanding auto loan accounts increases at the same time.21

On the right-hand side, βt′ are the main coefficients of interest. The dummy variable 1[t = t∗i +t′]

is equal to one if calendar month t is t′ months after t∗i , the month in which borrower i plain-
refinanced. We normalize β−1 (the month right before refinancing) to zero. Next, Zit refers to the
same set of observed characteristics included in Equation (8). Moreover, we also include Zipcode ×
Month fixed effects (ξzip(i)×t).

Figure 14 displays point estimates of βt′ from Equation (9) and their 95% confidence intervals.
We find that auto loan origination amounts increase after Month 0. The increases are especially
high and statistically significant for for Months 2 and 3. Moreover, the increases in the two months
are also substantial given that the average auto loan origination amount is $300 in a month.22 The
figure also shows that the auto loan originations increases only after refinancing. We do not find
any trends in new auto loan origination amounts before before Month 0.

20Examples of such papers are Agarwal et al. (2017), Di Maggio et al. (2017), and Abel and Fuster (2018).
21We also tried with a different threshold ($5,000) to define an auto loan origination. The results are very robust

to this alternative definition of auto loan originations.
22This number appears low because there are lots of borrowers who do not originate a new auto loan in a given

month.

42



Figure 14: Auto Loan Origination Amounts after Refinancing: This figure plots point esti-
mates of βt′ from Equation (9) and their 95% confidence intervals. We normalize β−1to zero. The
dependent variable is a new auto loan amount. The regression includes the Zipcode × Month fixed
effects and the control variables described in the main text. Standard errors for all specifications
are clustered at the level of Zipcode × Month.
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6.2.2 National CLL and Consumer Spending

Our findings so far suggest that TBA eligibility affects a borrower’s refinancing decision, and those
who refinanced increase their spending on automobiles after refinancing. Thus, we expect that TBA
eligibility also affects a borrower’s spending on automobiles.

In this subsection, we investigate whether a new auto origination amount increases for a bor-
rowers with a remaining mortgage balance below the national CLL. We estimate the following
regression, which is similar to Equation (8) but with NewAutoAmtit as the dependent variable.
Our regression specification, including the set of variables included as controls and fixed effects, is
exactly identical to the specification used in Section 6.1. The estimation sample is also identical.

NewAutoAmtit = α1[balit ≤ CLLt] + g+(balit; θ0) + g−(balit; θ1) + Zitγ + ξzip(i)×t + εi. (10)

We first graphically examine patterns of residual value of NewAutoAmtit around the cutoff in
Figure 15. The auto loan origination amounts generally decreases as remaining mortgage balances
decreases. Patterns for borrowers with remaining mortgage balances below the cutoff are noisier
than those for borrowers with balances above the cutoff. Comparing values right below and above
the cutoff, however, we find that auto loan origination amounts increase at the cutoff by $50, which
is about 13% of the unconditional average ($300).
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Figure 15: Auto Loan Origination Amounts around the National CLL: This figure plots
the relationship between the residual value of new auto origination amounts and the remaining loan
balance. The residual value is obtained by removing variation in the original variable accounted
for by observable characteristics Zit and fixed effects ξzip(i)×t after running the regression given by
Equation (10). Each dot represents the average value for each bin with the size of $2,500.
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Table 9 provide regression estimates that are consistent with Figure 15. Although exact magni-
tudes are different, all estimates indicate that auto loan origination amounts increase at the cutoff.
The estimate in Column (6) is not statistically significant, but its magnitude is quite consistent
with other estimates. Additional polynomials seem to increase the standard error of the estimate
very much.
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Table 9: Auto Loan Origination Amounts around the National CLL: The table displays the
estimated coefficients of the regression given by Equation (10) with new auto origination amounts
as the dependent variable. Each column is different only with respect to the maximum number
of polynomials. All columns include the Zipcode × Month fixed effects and the control variables
described in the main text. The standard errors are clustered at the level of Zipcode × Month.

Larger Window Small Window

(1) (2) (3) (4) (5) (6)
Polynomial=1 Polynomial=2 Polynomial=3 Polynomial=1 Polynomial=2 Polynomial=3

1[bali ≤ CLL] 19.8052∗ 37.6581∗∗ 51.7643∗∗ 37.0721∗∗ 55.6822∗∗∗ 32.3898
(1.82) (2.42) (2.57) (2.54) (2.59) (1.15)

bali 0.9492∗∗∗ 1.4851∗∗ 2.8757∗ 1.0552∗ 3.2657 3.8933
(5.63) (2.24) (1.72) (1.96) (1.57) (0.73)

1[bali ≤ CLL]× bali 1.0813∗∗ 2.8484 3.8282 2.9645∗∗ 3.1970 -11.9429
(1.99) (1.59) (0.94) (2.52) (0.74) (-1.15)

ZIPxMONTH FE Y Y Y Y Y Y
Other Controls Y Y Y Y Y Y

N. Obs. 3,684,465 3,684,465 3,684,465 1,422,031 1,422,031 1,422,031
Adj. R2 0.004 0.004 0.004 0.002 0.002 0.002

The findings in this section show that TBA eligibility eventually affects a borrower’s spending
on automobiles through his refinancing decision. Facing a trade-off between refinancing now into
a high-balance loan and refinancing later into a conventional conforming loan, many borrowers
wait until their mortgage balances decrease to levels below the national CLL and then refinance
into conventional conforming loans. As mentioned earlier, this waiting can be quite long. At the
same time, a borrower’s consumption spending is also tied to his refinancing decision. Durable
spending, approximated by the new auto loan amount, typically increases in two or three months
after refinancing. As a result, as a borrower waits for refinancing into a conventional conforming
loan, his durable spending is also delayed.

This finding has an important implication for monetary policy transmission. One of the main
channels for a lower interest rate to be translated into the real economy is through mortgage borrow-
ers’ refinancing (Agarwal et al., 2017; Abel and Fuster, 2018). Our finding suggests that liquidity of
the secondary mortgage market, which is captured by eligibility for TBA delivery in our setting, is
an important factor that affects how a lower interest rate is transmitted to the real economy. It also
highlights that preserving the secondary market structure that improves liquidity of the market is
important not only for welfare of borrowers but also for monetary policy transmission.

7 Conclusion

In this paper, we quantify the value of TBA eligibility for the mortgage borrowers. Being included
in TBA-eligible pools reduces primary mortgage rates by 10–40 basis points, depending on the
prepayment risk of the loan. Hence, the liquidity and trading structure of the secondary market
can have direct impact on the primary market and in the real economy. Borrowers also delay
refinancing in order to refinance into TBA-eligible loans. Given that refinancing is an important
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channel in which monetary policy affects the real economy, the discontinuity in TBA-eligibility and
the associated delay in refinancing may potentially slow the transmission of monetary policy.
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A Appendix: Extra Figures

Figure 16: Ratio of the Remaining Balance to the Original Balance around Cutoff 1:
These figures plot the residual ratio of the remaining balance to the original balance as of different
loan ages in terms of months since origination. The residual variables are obtained by removing
variation in corresponding original variables accounted by observable loan characteristics (Zi) and
fixed effects (ξs(i)×l(i)×t(i)) after running regressions given by Equation (3) with the original variables
as dependent variables. Each dot in the plot represents the average value of each residual variable
for each bin of the size of $2,500.
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Figure 17: Ratio of the Remaining Balance to the Original Balance around Cutoff 2
These figures plot the residual ratio of the remaining balance to the original balance as of different
loan ages in terms of months since origination. The residual variables are obtained by removing
variation in corresponding original variables accounted by observable loan characteristics (Zi) and
fixed effects (ξzip3(i)×l(i)×t(i)) after running regressions given by Equation (3) with the original
variables as dependent variables. Each dot in the plot represents the average value of each residual
variable for each bin of the size of 0.5.
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B Appendix: Extra Tables

Table 10: Regression Results for the Ratio of the Remaining Balance to the Original
Balance (Cutoff 1): This table displays the estimates of the regression similar to Equation (3),
where dependent variables are the ratio of remaining balance to the original balance as of loan age n
for n ∈ {24, 36, 48, 60, 72, 84}. The maximum degree of polynomials included in the regressions are
three for each column. For all columns, we used the subsample of loans with corresponding home
values within the window of $50,000 around the cutoff. For each column, we further restricted the
subsample to loans that were originated at least n months before the most recent month available
in the data (2018m9). All specifications include State x Lender x Month Fixed effects and control
variables described in the main text. Standard errors are clustered at the level of State x Lender x
Month.

(1) (2) (3) (4) (5) (6)
By Age 24 By Age 36 By Age 48 By Age 60 By Age 72 By Age 84

1[hi > h∗t(i)] 0.006 0.023 0.013 0.030 0.049∗ 0.023
(0.36) (1.06) (0.55) (1.17) (1.81) (0.90)

hi 0.000 -0.004∗∗ -0.003 -0.001 -0.001 -0.001
(0.10) (-2.17) (-1.43) (-0.33) (-0.50) (-0.36)

1[hi > h∗t(i)]× hi -0.001 0.003 0.002 -0.002 -0.006 -0.001
(-0.40) (0.73) (0.59) (-0.37) (-1.28) (-0.35)

STATExMONTHxSELLER FE Y Y Y Y Y Y
Other Controls Y Y Y Y Y Y

N. Obs. 35,443 29,761 25,066 20,564 15,614 12,434
Adj. R2 0.13 0.20 0.23 0.24 0.19 0.09

Table 11: Regression Results for Exogenous Variables (Cutoff 1): This table displays the
estimates of the regression similar to Equation (3) but with dependent variables are exogenous loan
characteristics in Zi. The maximum degree of polynomials included in the regressions are three
for each column. For all columns, we used the subsample of loans with corresponding home values
within the window of $50,000 around the cutoff. All specifications include State x Lender x Month
Fixed effects and control variables described in the main text. Standard errors are clustered at the
level of State x Lender x Month.

(1) (2) (3) (4)
Credit Score Loan-to-Income Ratio Broker Channel Correspondent Channel

1[hi > h∗t(i)] 0.592 0.063 0.001 -0.008
(0.43) (1.20) (0.09) (-0.62)

hi -0.176 -0.005 0.001 -0.000
(-1.57) (-1.10) (0.92) (-0.01)

1[hi > h∗t(i)]=1 × hi 0.104 -0.007 -0.002 0.003
(0.46) (-0.75) (-1.33) (1.34)

STATExMONTHxSELLER FE Y Y Y Y
Other Controls N N N N

N. Obs. 78,683 78,589 78,737 78,737
Adj. R2 0.06 0.11 0.48 0.43
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Table 12: Regression Results for the Ratio of the Remaining Balance to the Original
Balance (Cutoff 2): This table displays the estimates of the regression similar to Equation (5),
where dependent variables are the ratio of remaining balance to the original balance as of loan age n
for n ∈ {24, 36, 48, 60, 72, 84}. The maximum degree of polynomials included in the regressions are
three for each column. For all columns, we used the subsample of loans with PredLTVi between 100
and 110. For each column, we further restricted the subsample to loans that were originated at least
n months before the most recent month available in the data (2018m9). All specifications include
Zip3 x Lender x Month Fixed effects and control variables described in the main text. Standard
errors are clustered at the level of Zip3 x Lender x Month.

(1) (2) (3) (4) (5) (6)
By Age 24 By Age 36 By Age 48 By Age 60 By Age 72 By Age 84

1[PredLTV > 105] -0.005 0.004 -0.003 0.002 0.009 0.021
(-1.61) (1.28) (-0.80) (0.38) (0.82) (1.01)

PredLTV 0.002 0.003 0.002 0.003 0.003 -0.018∗

(1.35) (1.32) (0.94) (0.79) (0.41) (-1.80)
1[PredLTV > 105]× PredLTV -0.001 -0.004 -0.004 -0.007 -0.017 0.013

(-0.31) (-1.30) (-1.15) (-1.26) (-1.61) (0.65)

ZIP3xMONTHxSELLER FE Y Y Y Y Y Y
Other Controls Y Y Y Y Y Y

N. Obs. 61,744 54,914 44,277 23,311 11,282 3,481
Adj. R2 -0.02 0.01 0.01 0.01 -0.01 -0.03

Table 13: Regression Results for Exogenous Variables (Cutoff 2): This table displays the
estimates of the regression similar to Equation (5) but with dependent variables are exogenous loan
characteristics in Zi. The maximum degree of polynomials included in the regressions are three for
each column. For all columns, we used the subsample of loans with PredLTVi between 100 and
110. All specifications include Zip3 x Lender x Month Fixed effects and control variables described
in the main text. Standard errors are clustered at the level of Zip3 x Lender x Month.

(1) (2) (3) (4)
Credit Score Broker Channel Correspondent Channel Interest Rate for Prev Loan

1[PredLTV > 105] 1.511 0.003 0.000 -0.009
(0.79) (0.36) (0.04) (-0.52)

PredLTV -0.777 0.003 -0.004 0.012
(-0.69) (0.79) (-1.03) (1.29)

1[PredLTV > 105]=1 × PredLTV -0.252 -0.013∗∗ -0.003 0.021
(-0.14) (-1.99) (-0.54) (1.40)

ZIP3xMONTHxSELLER FE Y Y Y Y
Other Controls N N N N

N. Obs. 70,193 70,195 70,195 70,195
Adj. R2 0.10 0.23 0.21 0.22
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1 Introduction

In finance, extreme movements of asset prices occur much more frequently than predicted

by the tail probabilities of a Gaussian distribution. Such fat-tail events have caused many

problems, as exemplified by the failure of Long Term Capital Management. It is error-prone

to predict fat-tail events or to deal with their higher-order statistics. These difficulties give

rise to model risk1 and drive traders to implement robust control. Model risk is a prominent

concern for arbitrageurs whose activities are essential for market efficiency. Little is known

about how model risk affects arbitrage trading in a fat-tail environment. This topic is both

practically relevant and theoretically challenging. Answers to this question can provide new

insights into many topics in asset pricing, risk management, and market regulation.

The existence of various anomalies such as momentum suggests that financial markets

are not completely efficient2. Statistical arbitrage opportunities are also indicative of price

inefficiency, because arbitrageurs can make profits given only public information3. To study

statistical arbitrage trading, I introduce random fat-tail shocks to disrupt the efficient market

of a two-period Kyle (1985) economy. In the standard Kyle model setup, an informed trader

privately observes the stock liquidation value and trades sequentially to maximize her profits,

under the camouflage of noise traders and against competitive market makers. A Gaussian

information structure permits a unique linear equilibrium with an efficient linear pricing rule.

This paper models the stock value as a random realization drawn from the mixture of

Gaussian and Laplacian distributions, which have the same mean and variance. It is only

observed by an informed trader. The choice of a Laplacian distribution is empirically well-

grounded4. It has fat tails on both sides since its probability density decays exponentially.

This mixture setup allows the stock value to be fat-tailed with some probability. Market

makers believe that they live in the Gaussian world and also regard it as the common belief

among all agents. Market makers have the correct prior about the mean, variance, and

skewness, but incorrect beliefs about higher moments of the stock value distribution. With

Gaussian beliefs, they keep using a linear pricing rule5, which can result in estimation bias

if fat-tail shocks occur. This invites arbitrageurs to correct pricing errors. By assumption,

arbitrageurs are sophisticated enough to distinguish the distribution types (i.e., mispricing

1Model risk is the risk of loss when traders use the wrong model or deal with uncertain model parameters.
2As documented by Jegadeesh and Titman (1993), the momentum strategy could earn abnormal returns.
3See Lehmann (1990), Campbell, Lo, and MacKinlay (1997), Bondarenko (2003), Hogan, Jarrow, Teo,

and Warachka (2004), and Gatev, Goetzmann, and Rouwenhorst (2006) for discussions.
4The Laplace distribution can well characterize the distributions of stock returns sampled at different

time horizons. This is documented, for example, by Silva, Prange, and Yakovenko (2004).
5The empirical price impact function, which measures the average price change in response to the size of

an incoming order, is roughly linear with slight concavity. See Loeb (1983), Grinold and Kahn (2000) [p.
453], Gabaix, Gopikrishnan, Plerou, and Stanley (2006), and Kyle and Obizhaeva (2016).
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cases), but they face uncertainty about the dispersion of Laplace priors. For robust control,

arbitrageurs make trading decisions under the criterion of max-min expected utility6.

My main finding is that model risk can motivate risk-neutral arbitrageurs to implement a

machine-learning algorithm which mitigates their competition and ignores many mispricings.

This result contains three points that are discussed in greater details below.

First, arbitrageurs’ maximin robust strategy has a wide inaction zone: they start trading

only when the observed order flow exceeds three standard deviations of noise trading. Yet

this strategy is effective in catching the most profitable trades: arbitrageurs trade less than

2% of the time but can capture over 60% of the maximum profits they could earn in the

absence of model risk. Under this strategy, arbitrageurs choose to ignore small mispricings.

They focus on large events that involve little uncertainty about the trading direction. Ex post,

an econometrician may find a lot of mispricings that persist in this economy and question

arbitrageurs’ rationality or capacity. In fact, arbitrageurs are rational and risk-neutral in my

setting. They leave money on the table because of their aversion to uncertainty.

Second, this paper rationalizes a famous machine-learning method widely used in finance.

The above-mentioned robust strategy is operationally equivalent to a simple algorithm called

the Least Absolute Shrinkage and Selection Operator (LASSO)7. This is a powerful tool that

can select a few key factors from a large set of regression coefficients. The standard statistical

interpretation of LASSO involves a different mechanism, namely, the Maximum a Posteriori

estimate. This learning rule lacks Bayesian rationality because it uses the posterior mode as

point estimate, without summarizing all relevant information. In my setup, arbitrageurs are

Bayesian-rational when they decide to use LASSO: they evaluate all possible states using

Bayes’ rule and dynamically maximize a well-defined utility with sequential rationality.

Third, the maximin robust strategy supports tacit collusion and impairs market efficiency.

Arbitrageurs trade conservatively beyond the inaction zone. This enables them to accumulate

market power, which is most prominent near the kinks of their robust strategy. Therefore,

uncoordinated exercise of individual robust control facilitates tacit collusion among traders,

without any communication device or explicit agreement. Remarkably, even as the number

of arbitrageurs goes to infinity, their total profit does not vanish but converges to a finite

level. This non-competitive payoff is due to the “cartel” effect which hinders price efficiency.

6The theory of max-min expected utility is a standard treatment for ambiguity-averse preferences. It is
axiomatized by Gilboa and Schmeidler (1989), as a framework for robust decision making under uncertainty.
Related discussions can be found in Dow and Werlang (1992) and Hansen and Sargent (2001) for example.

7LASSO is a machine-learning technique developed by Tibshirani (1996) to improve prediction accuracy
and model interpretability. It is popular among algorithmic traders. This technique has recently been
employed in many financial studies, such as Huang and Shi (2011), Kozak, Nagel, and Santosh (2017),
Chinco, Clark-Joseph, and Ye (2017), and Freyberger, Neuhierl, and Weber (2017).
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Finally, I extend the model to allow for strategic interaction between the informed trader

and the group of arbitrageurs. The informed trader entices arbitrageurs to mimic past order

flows; arbitrageurs’ trend-following responses also tempt the informed trader to trick them:

she may first trade a large quantity to trigger those arbitrageurs and then unwind her position

against them. This strategy resembles several controversial schemes in reality. One example

is momentum ignition, a trading algorithm that attempts to trigger many other algorithmic

traders to run in the same direction so that the instigator can profit from trading against the

momentum she ignited. Another scheme is stop-loss hunting which attempts to force some

traders out of their positions by pushing the asset price to certain levels where they have set

stop-loss orders. In my setup, this sort of strategies can impair pricing accuracy, exaggerate

price volatility, and raise the average trading costs for common investors. Numerical results

also generate empirically testable patterns regarding price overreactions and volatility spikes.

Contributions to the literature. This paper investigates strategic arbitrage trading in an

uncertain fat-tail environment. This topic requires new methods and inspires fresh thinking.

Results discussed in this paper can contribute in multiple ways to the vast literature of asset

pricing, market microstructure, and behavioral finance.

First, this paper develops a new modeling framework for statistical arbitrage. The semi-

strong-form market efficiency holds in the standard Kyle (1985) model where traders have

common Gaussian beliefs about the economy. This simple assumption has been followed

by most subsequent studies8. The present paper deviates from the literature by introducing

fat-tail shocks to disrupt the Kyle equilibrium when market makers stick to Gaussian beliefs.

Unexpected changes in the underlying distribution cause mispricings in the market. This

gives room for arbitrageurs if they can foresee fat-tail shocks. Due to model risk, arbitrageurs

are uncertain about the extent of mispricings. If they simply follow the maximin criterion,

they may overemphasize the least favorable prior and become overly pessimistic in decision

making. This paper implements a rational procedure that prevents such biases. Similar to

the spirit of rational expectations, an internally consistent assumption is that arbitrageurs

inside this model have the correct belief on average about the model structure, despite their

uncertainty about some prior parameter. Recognizing this consistency, a rational arbitrageur

only considers those strategies that converge to the optimal strategy (as averaged across all

possible priors) and that preserve the convexity of their optimal strategy. Such constraints

make their admissible strategies comparable to the ideal rational-expectations strategy9.

8The literature includes Back (1992), Holden and Subrahmanyam (1992), Foster and Viswanathan (1994),
Foster and Viswanathan (1996), Vayanos (1999), Back, Cao, and Willard (2000), Vayanos (2001), Huddart,
Hughes, and Levine (2001), and Collin-Dufresne and Fos (2016), among many others.

9The rational-expectations strategy is the one that traders would use if they knew the true Laplace prior.
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Second, this paper is the first to study how market efficiency gets hindered by model risk

when arbitrageurs have fat-tail beliefs. This angle distinguishes the present paper from the

existing literature on limits to arbitrage10. Previous studies have suggested various important

frictions, including short-selling costs, leverage constraints, and wealth effects, which limit

arbitrageurs’ ability to eliminate mispricings. Excluding those frictions, the present paper

identifies another mechanism that can strongly affect the willingness of arbitrageurs to trade.

Specifically, model uncertainty of fat-tail priors make arbitrageurs hesitate to eradicate small

mispricings, because of ambiguity about the trading direction.

Third, this work sheds light on interesting topics at the interface of behavioral finance and

machine learning. This paper uses the max-min decision rule to rationalize the LASSO (“soft-

thresholding”) strategy, which was taken by Gabaix (2014) as a behavioral assumption of the

anchoring-and-adjustment mechanism. The LASSO algorithm has an inaction zone where

agents choose to ignore whatever happened, similar to the status quo bias11. The strategy of

arbitrageurs also resembles the behavior of feedback traders discussed in behavioral finance12.

In the eyes of an observer who has a Gaussian prior, arbitrageurs are “irrational” because

they show up randomly and all perform feedback trading based on historical prices. The

observer’s view is incorrect, given his misspecified prior in this economy.

This study can also help us to interpret empirical results about high-frequency traders

(HFTs)13. My primary model of statistical arbitrage can describe the situation where an

informed institutional investor executed large orders over time without anticipating that

HFTs detected her footprints to catch the momentum train; see Lewis (2014) for a historical

account. As an extension, I consider strategic interaction between an informed trader and

a group of arbitrageurs. This extended model can describe the situation where institutional

investors anticipate those HFTs and optimize their execution algorithms with strategic con-

siderations. My model is consistent with the empirical implications reported in van Kervel

and Menkveld (2017) on HFTs around institutional trading: (1)“HFTs appear to lean against

the wind when an order starts executing but if it executes more than seven hours, they seem

to reverse course and trade with wind.” (2)“Institutional orders appear mostly information-

motivated, in particular the ones with long-lasting executions that HFTs eventually trade

along with.” (3)“Investors are privately informed and optimally trade on their signal in full

awareness of HFTs preying on the footprint they leave in the market.”

10Gromb and Vayanos (2010) is an excellent survey on this subject. See also Shleifer and Vishny (1997),
Xiong (2001), Gabaix, Krishnamurthy, and Vigneron (2007), Kondor (2009), among others.

11See Kahneman, Knetsch, and Thaler (1991) and Samuelson and Zeckhauser (1988).
12For behavioral interpretations of feedback traders, see DeLong, Shleifer, Summers, and Waldmann

(1990), Barberis, Greenwood, Jin, and Shleifer (2015), and Barberis, Greenwood, Jin, and Shleifer (2018).
13For recent research on high-frequency trading, see Hendershott, Jones, and Menkveld (2011), van Kervel

and Menkveld (2017), Kirilenko, Kyle, Samadi, and Tuzun (2017), and Korajczyk and Murphy (2018).
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The extended model also contributes to the body of literature on market manipulations14.

In Allen and Gale (1992), a trade-based price manipulation is played by an uninformed

trader who attempts to trick other traders into believing the existence of informed trading.

In my model, the manipulative strategy is performed by an informed trader who trades in

an unexpected way to distort the learning of other traders. The informed trader may hide

her signal when it is strong and bluff when it is weak. In the linear equilibrium of Foster

and Viswanathan (1994), the better informed trader may also hide her information in early

periods and even trade against the direction of her superior signal. My analysis focuses on a

nonlinear equilibrium where the informed trader hides her information to reduce competitive

pressure from arbitrageurs. Several articles by Chakraborty and Yılmaz15 show that if market

makers face uncertainty about the existence of informed trades, then the informed trader

will bluff in every equilibrium by directly adding noise to other traders’ inference problem.

The disruptive strategy in my model is different because (1) it occurs under a set of specific

conditions, not state-by-state in every equilibrium; (2) it is a pure strategy that distorts

the learning of other traders, not a mixed strategy that adds some noise16; (3) it produces

bimodal distributions of prices, thereby magnifying both price volatility and trading costs.

Finally, the disruptive strategy in this paper shows that asset price “bubbles and crashes”

can take place in a strategic environment where speculators have fat-tail beliefs. Under good

enough liquidity conditions, a better-informed savvy trader may trade very aggressively to

trigger those speculators whose subsequent momentum responses can give this savvy trader a

reversal trading opportunity. This finding is related to the literature on market instability17.

The mechanism here shares some similarity with the model of Scheinkman and Xiong (2003)

where asset price bubbles reflect resale options due to traders’ overconfidence. In my setup,

speculators’ over-aggressive trading implicitly grants the informed trader a “resale option”

which could be exercised if condition permits. It is however worth remarking that traders in

my (extended) model share a common fat-tail prior, without any overconfidence bias.

The rest of this paper is organized as follows. Section 2 focuses on the primary model

where arbitrageurs exploit uncertain pricing errors in a robust manner. Section 3 studies the

extended model where a savvy informed trader anticipates and exploits those arbitrageurs.

Concluding remarks are made in Section 4. Major proofs are provided in Appendix A.

14See Allen and Gale (1992), Kumar and Seppi (1992), Jarrow (1992), van Bommel (2003), Huberman
and Stanzl (2004), Huddart et al. (2001), Khwaja and Mian (2005), Jiang, Mahoney, and Mei (2005);
Brunnermeier (2005), Brunnermeier and Pedersen (2005), Kyle and Viswanathan (2008), Goldstein and
Guembel (2008), Jarrow (2015), and Fox, Glosten, and Rauterberg (2018).

15See Chakraborty and Yılmaz (2004a), Chakraborty and Yılmaz (2004b), Chakraborty and Yılmaz (2008).
16Mixed strategies are studied in modified Kyle models by Huddart et al. (2001) and Yang and Zhu (2017).
17See Kyle and Xiong (2001), Abreu and Brunnermeier (2003), Hong and Stein (2003), and Scheinkman

and Xiong (2003), among others.
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2 Model of Robust Arbitrageurs

In this section, an equilibrium model is developed to study how arbitrageurs’ prior uncer-

tainty about mispricing shocks affects arbitrage strategy and market efficiency. This model

adds random fat-tail shocks to disturb the efficient market of a two-period Kyle (1985) model.

Table 1. The timeline and market participants in an economy of two auctions.
.
t = 0 t = 1 t = 2 t = 3

Informed Trader observe v submit x1 submit x2 receive πx

Noise Traders ... submit u1 submit u2 ...

Arbitrageurs observe s submit z1,n submit z2,n receive πz,n

Market Makers prior N (0, σ2
v) set p1 set p2 observe v

Structure and Notation. Consider the market in Table 1 with two rounds of trading, indexed

by t = 1, 2. The liquidation value of a risky asset, denoted ṽ, is either Gaussian or Laplacian:

ṽ = (1− s̃) · ṽG + s̃ · ṽL, where ṽG ∼ N (0, σ2
v), ṽL ∼ L(0, ξv), ξv ≡

σv√
2
. (1)

Here, s̃ takes the integer value 1 with probability α and takes the value 0 with probability

1 − α. The true Laplace scale parameter is set to be ξv = σv√
2

so that the variance of ṽ is

always σ2
v . The initial asset price is set as p0 = 0 without loss of generality. The quantities

traded by noise traders are Gaussian, denoted ũ1 ∼ N (0, σ2
u) and ũ2 ∼ N (0, γσ2

u). The noise

variances can be different, as tuned by the parameter γ > 0. All the random variables ṽ, s̃,

ũ1, and ũ2 are mutually independent. The parameters {σv, σu, γ} are common knowledge.

A risk-neutral informed trader privately observes ṽ at t = 0, submits market orders, x̃1

and x̃2, to buy or sell this asset before her private signal becomes public at t = 3. The

strategy is denoted by a vector of real-valued functions, X = 〈X1, X2〉. Prices and volumes

become public information right after the auctions take place. The information sets of

informed trader before trading at t = 1, 2 are I1,x = {ṽ} and I2,x = {ṽ, p̃1} where p̃1 is the

asset price at t = 1. It is justified to write x̃1 = X1(ṽ) and x̃2 = X2(ṽ, p̃1). The informed

trader’s total profit from both periods can be written as π̃x =
∑2

t=1(ṽ − p̃t)x̃t.
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A number of risk-neutral arbitrageurs (indexed by n = 1, ..., N) observe s̃, which encodes

the distribution type of ṽ. Each arbitrageur can place market orders, z̃1,n and z̃2,n, to exploit

potential market inefficiency. Their strategy profile is represented by a matrix of real-valued

functions, Z = [Z1, ...,ZN ] where Zn = 〈Z1,n, Z2,n〉 is the n-th arbitrageur’s strategy for

n = 1, ..., N . The information sets of arbitrageurs are I1,z = {s̃} and I2,z = {s̃, p̃1} before

their trading at t = 1, 2. The quantities traded by the n-th arbitrageur are z̃1,n = Z1,n(s̃)

and z̃2,n = Z2,n(s̃, p̃1). The total profit for the n-th trader is denoted π̃z,n =
∑2

t=1(ṽ− p̃t)z̃t,n.

Uninformed competitive market makers clear the market by setting prices at which they

strive to break even. Their pricing strategy is denoted by the vector of real-valued functions,

P = 〈P1, P2〉. The total order flow ỹt ≡ x̃t +
∑N

n=1 z̃t,n + ũt is observed by market makers

before they set the price p̃t at period t ∈ {1, 2}. We can write p̃1 = P1(ỹ1) and p̃2 = P2(ỹ1, ỹ2).

Belief System. Several assumptions are needed to clarify traders’ beliefs in this model:

Assumption 2.1. The informed trader and market makers think that it was common belief

among all traders that the asset liquidation value was normally distributed, ṽ ∼ N (0, σ2
v).

Assumption 2.2. Arbitrageurs have the correct Gaussian prior when s̃ = 0, but they face

uncertainty about the variance of fat-tail shocks when s̃ = 1. Their Laplace prior is modeled

as L(0, ξ̃) where ξ̃ ∈ Ω is a positive random variable. Arbitrageurs are ambiguity-averse and

maximize the minimum expected payoff over all possible priors. On average, arbitrageurs are

correct about the information structure, despite their prior uncertainty.

Assumption 2.3. Arbitrageurs know that market makers and the informed trader obey As-

sumption 2.1. Moreover, Assumption 2.2 is held as common knowledge among arbitrageurs.

Since fat-tail shocks occur with probability α in this market, the higher-order moments

of ṽ can differ from those of the Gaussian counterpart ṽG. When α = 0, the asset value ṽ

is exactly Gaussian and the model reduces to the standard two-period Kyle (1985) model.

The Laplace probability density, fL(v) = 1
2ξv

exp
(
− |v|
ξv

)
, has fat tails as it decays to zero

at an exponential rate. Thus, the likelihood of observing extreme events under the Laplace

distribution is much higher than under the Gaussian distribution with identical variance.

Knowledge of s̃ is valuable since it tells traders the distribution type of stock value. If

market makers have fat-tail beliefs and observe s̃ = 1, they should use a convex pricing rule

(which is rarely seen in real data). The Gaussian prior in Assumption 2.1 permits linear

pricing schedules compatible with empirical observations. Despite its simplicity, the linear

pricing function can underestimate the fat-tail information in large order flows. This opens

the door to arbitrageurs because market makers have mistakes with probability α.
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Arbitrageurs are sophisticated traders who may use advanced technology to detect mis-

pricings. Their privilege of observing s̃ represents their superior ability to identify statistical

arbitrage opportunities. Nonetheless, arbitrageurs often face uncertainty about their trading

models. The failure of Long-Term Capital Management (LTCM) demonstrates the critical

role of model risk and the disastrous impact when the worst-case scenario hit. This motivates

Assumption 2.2 that arbitrageurs care about the worst-case expected profits for robustness.

As proved by Gilboa and Schmeidler (1989), the max-min expected utility theory rationalizes

ambiguity-averse preferences. However, decisions derived from maximin optimization tend

to follow the least favorable prior regardless of its likelihood. This appears too pessimistic.

A more realistic assumption is that arbitrageurs’ admissible strategies converge, in a rational

manner18, to the average of optimal strategies evaluated across all possible priors. Similar to

the concept of rational expectations, I assume that arbitrageurs inside this model are correct

on average about the model structure. Without systematic bias, the average of optimal

strategies across all possible priors should converge to the rational-expectations equilibrium

(REE) strategy which corresponds to the ideal case that they know the true prior ξv.

Assumptions 2.1, 2.2, and 2.3 capture salient features of real-life arbitrage. In a nearly

efficient market, arbitrage opportunities should be rare and thus overlooked by most market

participants. Such opportunities may be identified and exploited by a small number of traders

(i.e., arbitrageurs who observe s̃). What may limit their trading is the model risk and their

imperfect competition. Arbitrageurs are likely to have similar priors and preferences, given

that they have similar forecasting technology and face similar pressures of robust control.

The belief system described in Assumption 2.1 can be denoted as B = {s̃ = 0}, which is

shared by the informed trader and market makers. They think that it is common knowledge

among all traders that ṽ ∼ N (0, σ2
v). Arbitrageurs are aware of their Gaussian belief B.

By Assumptions 2.2 and 2.3, the belief system shared by arbitrageurs can be expressed as

A = {s̃, ξ̃}, where ξ̃ denotes the uncertain Laplace prior. Arbitrageurs’ belief depends on

the observed s̃ which tells them the type of prior to use:

ṽ ∼ N (0, σ2
v) if A = {s̃ = 0, ξ̃} and ṽ ∼ L(0, ξ̃) if A = {s̃ = 1, ξ̃}. (2)

Obviously, A and B are consistent when s̃ = 0 but they are at odds when s̃ = 1. Market

makers believe that any uninformed trader holds the same Gaussian prior as they do. In

fact, arbitrageurs can infer that market makers use the wrong prior when s̃ = 1.19.

18To avoid overfitting, their admissible strategy should preserve the convexity of their optimal strategies.
19This is not “agreement to disagree” because traders have inconsistent belief structures here. Han and

Kyle (2017) discussed the situation where traders have inconsistent beliefs about the mean. In my model,
traders agree on the mean but hold inconsistent beliefs about higher moments of ṽ.
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2.1 Equilibrium Definition and Conjecture

The trading of arbitrageurs affects the realized profit of informed trader π̃x. To emphasize

its dependence on all traders’ strategies, we write π̃x = π̃x(X,P,Z). Similarly, each arbi-

trageur takes into account the strategies played by other traders. To stress such dependence,

we write z̃t,n = z̃t,n(X,P,Z) and π̃z,n = π̃z,n(X,P,Z) for n = 1, ..., N . By Assumption 2.2,

each arbitrageur seeks to maximize the minimum expected profit over all possible priors:

max
Zn∈Z2

min
ξ∈Ω

EA
[
π̃z,n

∣∣∣∣s̃, ξ̃ = ξ

]
= max

Zn∈Z2
min
ξ∈Ω

EA

[
2∑
t=1

(ṽ − p̃t)zt,n
∣∣∣∣s̃, ξ̃ = ξ

]
, (3)

where Zn = 〈z1,n, z2,n〉. Both z1,n and z2,n are in the admissible set Z which requires asymp-

totic convergence to the REE without losing the convexity/concavity of the REE strategy.

Definition of Equilibrium. A sequential trading equilibrium in this model is defined as a

tuple of strategies (X,P,Z) such that the following conditions hold:

1. For any alternative strategy X′ = 〈X ′1, X ′2〉 differing from X = 〈X1, X2〉, the strategy

X yields an expected total profit no less than X′, and also X2 yields an expected profit

in the second period no less than the single deviation X ′2:

EB[π̃x(X,P,Z)|ṽ] ≥ EB[π̃x(X
′,P,Z)|ṽ], (4)

EB[(ṽ − p̃2(〈X1, X2〉,P,Z))X2|ṽ, p̃1] ≥ EB[(ṽ − p̃2(〈X1, X
′
2〉,P,Z))X ′2|ṽ, p̃1]. (5)

2. For all n = 1, ..., N and any alternative strategy profile Z′ differing from Z only in the

n-th component Z′n = 〈Z ′1,n, Z ′2,n〉, the strategy profile Z yields a utility level (i.e., the

minimum expected profit over all possible priors) no less than Z′, and also Z2,n yields

a utility level in the second period no less than the single deviation Z ′2,n:

min
ξ∈Ω

EA[π̃z,n(X,P,Z)|s̃, ξ̃ = ξ] ≥ min
ξ∈Ω

EA[π̃z,n(X,P,Z′)|s̃, ξ̃ = ξ]; (6)

min
ξ∈Ω

EA[(ṽ − p̃2(·, Z2,n))Z2,n|s̃, p̃1, ξ̃ = ξ] ≥ min
ξ∈Ω

EA[(ṽ − p̃2(·, Z ′2,n))Z ′2,n|s̃, p̃1, ξ̃ = ξ],(7)

where the strategy profile on the right hand side of Eq. (7) only differs from (X,P,Z)

at Z2,n. Any strategy considered by arbitrageurs has to be in the admissible set Z.

3. The prices, P = 〈P1, P2〉, are set by the market makers’ posterior expectation of ṽ:

p̃1 = P1(ỹ1) = EB[ṽ|ỹ1], and p̃2 = P2(ỹ1, ỹ2) = EB[ṽ|ỹ1, ỹ2]. (8)
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Equilibrium Conjecture. The full equilibrium (X,P,Z) can be characterized separately. The

informed trader and market makers believe that they were living in a two-period Kyle model

(Assumption 2.1). They think that arbitrageurs held the same Gaussian belief and would not

trade in a conjectured equilibrium with (semi-strong-form) market efficiency. This inspires

them to conjecture a subgame perfect linear equilibrium (X,P).

Proposition 2.1. Under Assumptions 2.1, there exists a unique subgame perfect linear

equilibrium (X,P) identical to the linear equilibrium of a two-period Kyle (1985) model with

normally distributed random variables. Market makers set the linear pricing rule:

p̃1 = P1(ỹ1) = λ1ỹ1, p̃2 = P2(ỹ1, ỹ2) = p̃1 + λ2ỹ2, λ1 =

√
2δ(2δ − 1)

4δ − 1

σv
σu
, λ2 = δλ1. (9)

The equilibrium ratio δ = λ2
λ1

is determined by the largest root to the cubic equation:

8γδ3 − 4γδ2 − 4δ + 1 = 0. (10)

The informed trader follows the linear trading strategy:

x̃1 = X1(ṽ) =
ṽ

ρλ1

=
2δ − 1

4δ − 1
· ṽ
λ1

, x̃2 = X2(ṽ, ỹ1) =
ṽ − λ1ỹ1

2δλ1

, (11)

where ρ ≡ 4δ−1
2δ−1

is a liquidity-dependent parameter that reflects the trading intensity at t = 1.

Informed trader and market makers believe that no arbitrageurs would trade under (X,P).

Proof. This is an extension of Proposition 1 in Huddart et al. (2001). See Appendix A.1.

To break even under different liquidity conditions, market makers can adjust the slopes of

linear pricing schedules. For example, when noise trading volatility is constant (i.e., γ = 1),

they can solve from Eq. (10) that δ ≈ 0.901; when γ = 3
4
, they can find that δ = 1 and

λ1 = λ2 =
√

2
3
σv
σu

; when liquidity evaporates (γ → 0), the solution explodes: δ → ∞ so that

λ1 = σv
2σu

and λ2 → ∞. It is convenient to introduce a dimensionless parameter to denote

the liquidity condition. Market depth is usually measured by the inverse of price impact

parameter. To quantify the change of market depth in the second period, I define

µ ≡ λ−1
1 − λ−1

2

λ−1
1

= 1− 1

δ
. (12)

In general, µ ∈ [−1, 1]. For example, µ = 0.5 indicates a 50% drop of market depth, while

µ = 0 reflects constant depth. Market depth becomes higher (i.e., µ < 0) if γ > 3
4
.
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If market makers know that ṽ is drawn from the mixture distribution, the linear pricing

rule in Eq. (9) can still help them to break even, regardless of the mixture parameter α.

Linear pricing preserves the symmetry of probability distributions so that market makers’

unconditional expected profits are zero : E[(p̃2− ṽ)ỹ2] = 0 and E[(p̃1− ṽ)ỹ1 +(p̃2− ṽ)ỹ2] = 0.

This shows the robustness of linear pricing strategy and may explain its popularity.

By Proposition 2.1, the informed trader and market makers believe that no arbitrageurs

would trade in this market. Thus, any strategy profile Z does not affect the linear equilibrium

strategies X and P. Arbitrageurs can take Proposition 2.1 as given when solving their own

dynamic optimization problems Eq. (6) and Eq. (7). Arbitrageurs know that the informed

trader and market makers do not anticipate their trading. Arbitrageurs take into account

the price impacts of all traders in the market. When s = 0, the belief structure of all traders

is consistent and correct. In this case, arbitrageurs have no advantage over market makers.

Corollary 2.1. When s = 0, arbitrageurs do not trade because the market is indeed efficient.

Arbitrageurs are better “informed” than market makers in the presence of fat-tail shocks.

Will they trade immediately? Let us conjecture now and verify later that arbitrageurs would

not trade in the first period. This is intuitive given the symmetry of their priors and the

linearity of pricing rule. It simplifies the procedure to solve this equilibrium. First, Eq. (7)

can be used to derive the optimal strategy profile 〈Z2,1, ..., Z2,N〉 in the next period under the

conjecture that Z1,n = 0 for all n = 1, ..., N . Second, Eq. (6) can be used to verify that it

is not a profitable deviation for any arbitrageur to trade in the first period. If no one would

deviate, Z = [〈0, Z2,1〉, ..., 〈0, Z2,N〉] will indeed be the equilibrium strategy for arbitrageurs.

2.2 Optimal Strategy without Model Risk

The linearity of informed trader’s strategy X1(v) = v
ρλ1

simplifies arbitrageurs’ inference.

Intuitively, the quantities traded by them in the presence of fat-tail shocks are proportional

to their conditional expectation of the stock value mispriced by the market. Of course,

the posterior estimate of ṽ depends on their fat-tail priors. It is helpful to study the ideal

case that model risk vanishes. If there is no ambiguity in their prior, arbitrageurs become

subjective expected utility optimizers, under their Laplace prior L(0, ξ) when s = 1.

Proposition 2.2. In the absence of model risk, arbitrageurs maximize their expected profits.

Over the liquidity regime µ > µε ≈ −0.2319 where µε is the largest root to the cubic equation

µ3 + 21µ2 + 35µ + 7 = 0, arbitrageurs do not trade at t = 1 and their optimal strategy at
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t = 2 is proportional to their posterior expectation of θ̃ = ṽ − p1 under the prior L(0, ξ):

Zo
2,n(s, y1; ξ) = s

1− µ
N + 1

· v̂(y1; ξ)− λ1y1

2λ1

= s
1− µ
N + 1

· θ̂(y1; ξ)

2λ1

, n = 1, ..., N. (13)

The estimator v̂(y1; ξ) is the posterior mean of ṽ under the prior that ṽ is drawn from L(0, ξ):

v̂ = EA[ṽ|y1 = y′σu, ξ] =
κξ(y′ − κ)erfc

(
κ−y′√

2

)
erfc

(
κ−y′√

2

)
+ e2κy′erfc

(
κ+y′√

2

) +
κξ(y′ + κ)erfc

(
κ+y′√

2

)
erfc

(
κ+y′√

2

)
+ e−2κy′erfc

(
κ−y′√

2

) .(14)

The rescaled estimator v̂/ξ is an increasing function of the rescaled quantity y′ = y1/σu, with

one dimensionless shape parameter, κ ≡ ρλ1σu
ξ

. The rational-expectations equilibrium (REE)

corresponds to the case that their prior is correct, i.e., ξ = ξv. Under REE, κ = 2√
1+µ

.

Proof. See Appendix A.2.

Arbitrageurs only trade when fat-tail shocks occur. In the eyes of some econometrician

who holds the Gaussian belief and trusts in market efficiency, those arbitrageurs seem to be

“irrational” because they show up randomly and behave like feedback traders. This may

raise various behavioral arguments, without recognizing the misspecification of priors.

Arbitrageurs’ prior is symmetric (non-directional) at the beginning. They postpone arbi-

trage trading until they could tell the trading direction from past price movements, or equiv-

alently, until their posterior beliefs become skewed. Proposition 2.2 confirms this no-trade

conjecture in the first period. It also explains why this paper starts from a two-period setup.

Even though arbitrageurs are better informed (with the knowledge of s̃) than market makers,

their prior expectation of the stock value is identical to market makers’. Arbitrageurs have

to watch the market first to see in which direction market makers incur pricing errors. This

“wait-and-see” strategy suggests that arbitrage trading can be delayed for learning purposes

so that mispricings may sustain for a longer period of time. The mechanism here is different

from the delayed arbitrage discussed in Abreu and Brunnermeier (2002) where arbitrageurs

face uncertainty about when their peers will exploit a common arbitrage opportunity.

The optimal strategy is symmetric with the past order flow: Zo
2,n(s,−y1) = −Zo

2,n(s, y1).

The rescaled strategy, Zo
2,n/σu, is a function of the rescaled order flow y′ = y1/σu in the fat-

tail case. The optimal strategy becomes almost linear at large order flows. Its asymptotic

slope is equal to the slope of linear strategy for traders who have a uniform prior (ξ →∞).

Examination of the first and second derivatives leads to the following statement.

Corollary 2.2. When s = 1, the optimal strategy Zo
2,n(s, y1) is convex in the positive domain

of y1 and concave otherwise. It is asymptotically linear with a limit slope of 1−µ
(1+µ)(N+1)

.
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2.3 Robust Strategy under Model Risk

As indicated by Eq. (14), the estimator v̂ depends on the dispersion of Laplace prior, ξ.

How would arbitrageurs trade when they have uncertain priors? Model risk is a critical issue

in statistical arbitrage, because using a wrong prior could yield a business disaster like the

failure of LTCM. In the real world, traders often face the pressure to test the performance of

their strategies in the worst-case scenario. This pressure can drive them to adopt alternative

strategies that sacrifice some optimality for robustness.
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Figure 1. The optimal strategy Zo
2,n(s = 1, y1; ξ) in Eq. (13) under different values of ξ.

Fig. 1 shows the optimal strategy under different values of the Laplace parameter ξ. An

arbitrageur with the prior ξ → 0 believes that the stock value is unchanged (i.e., ṽ = 0). This

trader will attribute all the order flow y1 to noise trading and trade against any price change.

In contrast, an arbitrageur with the extreme prior ξ →∞ believes that the past order flow

is dominated by informed trading and thus will chase the price trend straightly. For small ξ,

arbitrageurs will engage in contrarian trading on small order flows which are dominated by

noise trading under their belief. For large ξ, arbitrageurs always use a momentum strategy.

Suppose that arbitrageurs’ uncertain prior ξ̃ is in the interval [ξL, ξH ], where both the

highest and lowest priors, ξH and ξL, have non-zero chances. If the divergence between ξH and

ξL is large enough, arbitrageurs can face ambiguity about the trading direction conditional

on small order flows20: they may want to buy the asset under a high prior (for example,

20If the extreme priors satisfy y1Z
o
2,n(s, y1; ξH) > 0 for any y1 6= 0 and y1Z

o
2,n(s, y1; ξL) ≤ 0 for a nonzero

measure of y1, then different fat-tail priors can give opposite trading directions at small order flows.
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ξ = 3 in Fig. 1) but sell it under a low prior (for example, ξ = 1 in Fig. 1). If they use the

wrong prior, they may trade in the wrong direction and undergo adverse fat-tail shocks.

By Assumption 2.2, arbitrageurs rank strategies based on the maximin decision criterion,

i.e., each arbitrageur maximizes the minimum expected profit over a set of multiple priors.

Pure maximin optimization can give very pessimistic decisions which stick to the least fa-

vorable prior even if it has a tiny chance to occur. To avoid over-pessimistic responses, I

assume that arbitrageurs’ admissible strategies converge to the averaged optimal strategy

(across all priors) in a rational manner that preserves its convexity and/or concavity. Let’s

also enforce internal consistency: arbitrageurs inside this model “know” its structure in a

statistical sense. On average, they are correct about the economy without systematic bias.

First, it is reasonable and important to invoke the convergence condition. If arbitrageurs

observe an extremely large order flow y1, they will be pretty sure that y1 was dominated by in-

formed trading in the fat-tail scenario. This resolves their ambiguity about trading directions

and boosts their confidence to follow the averaged optimal strategy, EA[Zo
2,n(s̃, y1; ξ̃)|s̃ = 1].

Let Z∞ denote the asymptotes of this averaged strategy. Simple derivation yields

Z∞(y1, Kξ) =
1− µ
1 + µ

· y1 − sign(y1)Kξ

N + 1
, where Kξ =

λ1ρ
2σ2

u

ρ− 1
EA[ξ̃−1]. (15)

To ensure internal consistency, Eq. (15) should coincide with the asymptotes of the rational-

expectations equilibrium (REE) strategy given the true prior ξv. This requires EA[ξ̃−1] = ξ−1
v

under which the asymptotes becomes Z∞(y1, K
∗) where

K∗ =
λ1ρ

2σ2
u

(ρ− 1)
ξ−1
v =

3 + µ√
1 + µ

σu =

√
2σv
λ1

. (16)

The condition EA[ξ̃−1] = ξ−1
v means that arbitrageurs’ average belief is correct regarding the

precision of Laplace prior. Similar to the concept of rational expectations, arbitrageurs inside

this model make unbiased predictions on average, despite their uncertainty about the model

structure. Any candidate strategy should converge to Z∞(y1, K
∗). This condition ensures

that the strategy space of arbitrageurs is anchored to their REE strategy (benchmark).

Second, the admissible strategies should rationally preserve the convexity and/or concav-

ity of the optimal strategy. By Corollary 2.2, any optimal strategy (without model risk) is

convex in the positive domain and concave otherwise (Fig. 1). Thus, any candidate strategy

must be convex in the regime of y1 > 0 and concave in the regime of y1 < 0. Without this

convexity-preserving condition, traders would consider strategies with arbitrarily complex

curvatures. This may cause over-fitting problems and make model interpretation difficult.

14



a

b

c

𝑍2,𝑛

𝑦1

𝜉 → 0

𝜉 → ∞

𝑍∞

𝐾∗

Figure 2. The robust strategy Z2,n in the presence of model risk.

Any strategy that converges to the REE strategy without losing its convex property must

lie in the shaded areas of Fig. 2. Any strategy running outside this area violates either the

convergence condition or the convexity-preserving rule. We can focus on the positive domain

and divide the shaded area into three regions. For any y1 ∈ [0, K∗], arbitrageurs will not

sell against y1, because they may lose money if the highest prior ξH is true. This rules out

any decision point inside the triangle “a”. Similarly, arbitrageurs will not buy the stock

since they may also lose money if the lowest prior ξL is true. This rules out any decision

point inside the triangle “b”. So the max-min choice criteria indicate a no-trade zone over

y1 ∈ [0, K∗]. Next, for any y1 > K∗, ambiguity-averse traders should not trade a quantity

more than the one prescribed by the REE asymptotes Z∞(y1, K
∗); otherwise they may lose

in the worst-case scenario. This argument rules out any decision point inside the region “c”.

By symmetry, the robust strategy turns out to be a piecewise linear function of y1, with the

trading threshold K∗. This simple strategy is labeled by the red line in Fig. 2.

Proposition 2.3. If arbitrageurs face sufficient model uncertainty about the fat-tail priors

and if they follow the max-min choice criteria to rank the admissible strategies defined before,

then their robust strategy at t = 2 is a piece-wise linear function of the order flow at t = 1:

Z2,n(s, y1;K∗) = sZ∞(y1, K
∗)1|y1|>K∗ = s

1− µ
1 + µ

· y1 − sign(y1)K∗

N + 1
· 1|y1|>K∗ , (17)

which is along the REE asymptotes with the trading threshold K∗ given by Eq. (16).

Proof. See Appendix A.3.
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The endogenous decision boundary K∗ is independent of the number of arbitrageurs (N)

or the variance of asset value (σ2
v). For constant noise trading volatility (γ = 1), one can find

K∗ ≈ 3.063σu which is roughly three standard deviations of noise order flows. This indicates

a very large inaction zone for the robust strategy. To see how inactive it is, let us examine

the unconditional variance of the first-period total order flow, σ2
y = σ2

v

(ρλ1)2
+ σ2

u = 3+µ
2
σ2
u,

which implies K∗ ≈ 2.5483σy. When the asset value ṽ is Laplacian, the probability that

arbitrageurs get triggered to trade is very small, P (|y1| > K∗) ≈ 1.33%. One might think

that such a strategy is too inert to be profitable. This is not true. Numerically, the robust

strategy can capture about 60% of the maximum profit recouped by the ideal REE strategy.

This performance is surprisingly good given the idleness of the robust strategy. Fat-tail

shocks create a disproportionate distribution of mispricings. The robust strategy is effective

in picking up most profitable opportunities which correspond to those large fat-tail events.

So far, I have discussed various belief-related reasons for arbitrageurs’ inaction. Their

no-trade conditions are summarized as follows:

Corollary 2.3. Arbitrageurs do not trade if any of the following conditions holds:

(1) the market is efficient in the semi-strong form under their belief;

(2) their prior expectation of ṽ is identical to market makers’ expectation;

(3) the past price change cannot drive them out of their inaction (ambiguity) zone.

Proof. Condition (1) holds at s̃ = 0, Condition (2) holds for their decision making at t = 1,

and Condition (3) is implied by Proposition 2.3.

Given their idleness, it may well be the case that arbitrageurs are overlooked by the rest of

the market. This is self-consistent with the implication of Assumptions 2.1, 2.2, and 2.3.

More importantly, given their no-trade strategy in the first period and inaction region in

the second period, a lot of pricing errors can persist in this market. Ex post, an econometri-

cian can run regressions on historical data to discover many mispricings in this economy. The

econometrician may question the rationality or capability of arbitrageurs as they apparently

leave money on the table. Ex ante, arbitrageurs assess all possible states using Bayes’ rule.

They are risk-neutral but ambiguity averse. For maximin robustness, they rationally ignore

small profit opportunities which involve ambiguity about the trading direction. Neither fi-

nancial constraints nor trading frictions exist here. There is no limit to arbitrageurs’ trading

ability. It is model risk that reduces their willingness to eliminate mispricings. This intrinsic

friction is especially important in the fat-tail world where it leads to a large no-trade zone.
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2.4 Equivalent Learning Rule and Alternative Interpretations

The optimal strategy without model risk uses the posterior mean estimate in Bayesian

learning (Proposition 2.2). What is the learning mechanism behind the robust strategy?

Arbitrageurs are Bayesian rational when they solve their maximin objectives, Eq. (6) and

Eq. (7). It is noteworthy that the derived (robust) strategy is observationally equivalent to

the Least Absolute Shrinkage and Selection Operator (LASSO), a famous machine-learning

technique developed by Tibshirani (1996). The LASSO estimate can be interpreted as the

posterior mode under independent Laplace prior. In statistics, the posterior mode is for-

mally known as the Maximum a Posteriori (MAP) estimate. This learning rule itself lacks

Bayesian rationality because it does not use all relevant information in forming expectations

of unknown variables21. Nonetheless, the MAP estimate can “produce” the robust strategy.

Proposition 2.4. If arbitrageurs know the true Laplace prior ξv but directly use the MAP

learning rule to estimate the mispricing signal θ̃ = ṽ − p1, then their strategy in the second

period will be operationally equivalent to the robust strategy in Proposition 2.3:

Z2,n(s = 1, y1;K∗) =
θ̂map

2(N + 1)λ2

=
(v̂map − λ1y1)1|y1|>K∗

2(N + 1)λ2

. (18)

Here, θ̂map is the MAP estimate of θ̃. It contains v̂map which is the MAP estimate of ṽ under

the prior L(0, ξv). This is a soft-thresholding function with a threshold κσu = ρλ1σ2
u

ξv
= 2σu√

1+µ
:

v̂map(y1; ξv) = ρλ1[y1 − sign(y1)κσu]1|y1|>κσu . (19)

Proof. See Appendix A.4.

Fig. 3 compares the learning rules and their associated strategies. Both the posterior

mean estimate v̂ and the REE strategy Zo
2,n(s = 1, y1; ξv) are smooth and nonlinear. In

contrast, the posterior mode estimate v̂map is zero for y1 ∈ [−κσu, κσu] and linear beyond

that zone. The robust strategy Z2,n has a similar pattern as it performs linear momentum

trading beyond the inaction zone [−K∗, K∗]. Traders who follow this strategy only respond

to large events and deliberately ignore small ones. This rational response is similar to various

behavioral patterns, including limited attention, status quo bias, anchoring and adjustment,

among others22. Again, it is worth stressing that arbitrageurs are Bayesian-rational here:

they evaluate all possible states using Bayes rule and maximize their well-defined utility with

21The MAP estimate of a variable equals the mode of the posterior distribution. As a point estimate, it
does not summarize all relevant information in the posterior distribution.

22Barberis and Thaler (2003) provide an excellent survey on those topics in behavioral finance.
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Figure 3. (a) The posterior mean versus the posterior mode of ṽ under the Laplace prior
L(0, ξv). (b) the optimal (REE) strategy versus the robust strategy at t = 2 when s = 1.

sequential rationality. One can apply Propositions 2.3 and 2.4 to rationalize the behavioral

assumption of Gabaix (2014). In his model, the soft-thresholding function like Eq. (19) is

used to describe the anchoring bias. Such behavior also permits a rational interpretation.

In a multi-asset economy subject to uncertain fat-tail shocks, Proposition 2.4 implies

that arbitrageurs can directly incorporate the LASSO algorithm into their trading system:

Corollary 2.4. Suppose that arbitrageurs identify M ≥ 1 assets with independent and iden-

tically distributed liquidation values, ṽi ∼ L(0, ξv) for i = 1, ...,M , and each of these assets is

traded by a single informed trader in the two-period Kyle model with constant noise trading.

For robust learning, arbitrageurs solve the LASSO objective in the Lagrangian form:

min
{v1,...,vM}

M∑
i=1

∣∣∣∣p1,i −
vi
ρ

∣∣∣∣2 +
2(λ1σu)

2

ξv
|vi|, (20)

where p1,i = λ1y1,i is the price change of the i-th asset and ρ−1 is the percentage of private

signal that has been incorporated into the asset price at t = 1. This leads to a simple strategy

Z2,n(p1,i, ξv) =
ρ− 1

N + 1
· p1,i ± 2ξv

2λ2

· 1|p1,i|≥2ξv , for i = 1, ...,M, (21)

which is automatically triggered to trade the i-th asset if its price change p1,i exceeds ±2ξv.

Proof. See Appendix A.4.
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The objective of maximizing the posterior (under MAP) is equivalent to the minimization

problem Eq. (20). It involves an l1 penalty term that comes from the Laplace prior L(0, ξv).

LASSO shrinks certain estimation coefficients to zero and effectively selects a simpler model

that exclude those coefficients. This is a popular tool among quantitative traders because it

picks up a small number of key features (factors) from a large set of candidate features. For

traders who use LASSO, their trading models shall involve fat-tail (typically Laplace) priors.

If traders use the Gaussian prior instead, they will incur an l2 penalty in their objective. The

resulted algorithm is ridge regression which uniformly shrinks the size of all coefficients but

does not send any coefficients to zero. Even with parameter uncertainty about the Gaussian

prior, traders will not get an inaction zone. This is because signal inference is linear when

the posterior is Gaussian. For symmetric unimodal distributions, the mean coincides with

the mode; the two learning rules will give identical predictions. Since different Gaussian

priors only change the slopes of linear responses, the maximin robust strategy in a pure

Gaussian-mixture model will be linear; see Appendix A.4 for more details.

Corollary 2.4 can help explain the momentum strategy and anomaly in asset pricing23.

Short-term momentum traders can be viewed as statistical arbitrageurs who have uncertain

fat-tail priors about mispriced stocks. Their robust trading is exactly the momentum strategy

of buying winners and selling losers. Those traders usually focus on top market gainers and

losers, instead of the entire universe of equities. Corollary 2.4 can also be used to interpret

rule-based algorithmic trading which gets triggered at some predefined price levels. At first

glance, such trading behavior seems to be mechanical and at odds with Bayesian rationality.

It is possible that algorithmic traders are Bayesian-rational. They may use machine-learning

techniques (such as LASSO) to manage unknown risks or improve prediction accuracy.

The robust LASSO strategy can also be used by market makers for error self-correction.

Market makers can split their pricing logic into two programs. The first one is the linear

pricing strategy which allows them to almost break even, despite their occasional mistakes.

The second program uses the fat-tail prior to correct the errors of linear pricing strategy,

just like the actions of arbitrageurs. This leads to the LASSO algorithm. Integrating both

programs, market makers can keep using the linear pricing rule until their inventory exceeds

the endogenous thresholds. At that point, they will switch to momentum trading and reduce

excessive inventories. The no-trade zone in the second program is the ambiguity zone where

they hesitate to correct uncertain pricing errors; this no-trade zone is also their comfortable

zone to do market making. This new interpretation differs from conventional arguments that

market makers’ inventory limits are due to their high risk aversion or large inventory costs.

23See Jegadeesh and Titman (1993), Chan, Jegadeesh, and Lakonishok (1996), Carhart (1997), Hong and
Stein (1999), Daniel, Hirshleifer, and Subrahmanyam (1998), Lee and Swaminathan (2000), among others.
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2.5 Cartel Effect and Market Inefficiency

Arbitrageurs trade conservatively beyond the endogenous inaction zone. Their conserva-

tive trading facilitates their tacit collusion which mitigates their competition and impedes

market efficiency. This has interesting implications for limits to arbitrage.

Proposition 2.5. As N →∞, the total profit of arbitrageurs vanishes if they use the REE

strategy. However, their total profit has a positive limit if they follow the robust strategy.

Proof. If arbitrageurs all follow the optimal REE strategy Zo
2,n(s, y1; ξv), they will compete

away their total arbitrage profit when N goes to infinity:

lim
N→∞

EA

[
N∑
n=1

(ṽ − p̃2)Zo
2,n

]
= lim

N→∞
EA
[
N
(
ṽ − λ1ỹ1 − λ2X2(ṽ, ỹ1)−Nλ2Z

o
2,n

)
Zo

2,n

]
= lim

N→∞
EA
[

(N + 1)(ṽ − λ1ỹ1)−N(v̂ − λ1ỹ1)

2(N + 1)
· N(v̂ − λ1ỹ1)

2(N + 1)λ2

]
= lim

N→∞

N

4(N + 1)2λ2

EA[(v̂(ỹ1)− λ1ỹ1)2] = 0, (22)

where in the above derivation we have used Eq. (11) and EA[ṽ] = EA[EA[ṽ|ỹ1]] = EA[v̂(ỹ1)].

In contrast, if arbitrageurs follow the robust strategy Z2,n(s, y1;K∗), their total arbitrage

profit will converge to a positive value, indicating a cartel effect:

lim
N→∞

EA

[
N∑
n=1

(ṽ − p̃2)Z2,n

]
= lim

N→∞
EA

[
(N + 1)(ṽ − λ1ỹ1)−Nθ̂map

2(N + 1)
· Nθ̂map

2(N + 1)λ2

]

= lim
N→∞

EA[N(N + 1)(v̂ − v̂map + v̂map − λ1ỹ1)θ̂map −N2θ̂2
map]

4(N + 1)2λ2

=
EA[(v̂ − v̂map)θ̂map]

4λ2

> 0, (23)

where in the above derivation we have used Eq. (18) and EA[ṽ] = EA[v̂(ỹ1)]. The expression

of the MAP estimate θ̂map ≡ (v̂map−λ1ỹ1)1|ỹ1|>K∗ implies (v̂map−λ1ỹ1)θ̂map = θ̂2
map. The last

expression is strictly positive because (v̂−v̂map) and θ̂map has the same sign for |ỹ1| > K∗.

Fig. 4(a) shows the total profit of a hundred arbitrageurs who follow the robust strategy,

conditional on the observed order flow y1. This profit profile (red curve) is proportional to

the term (v̂ − v̂map) · θ̂map in Eq. (23). It exhibits two spikes of profits beyond the trading

thresholds (labeled by blue circles). These spikes indicate the major source of their extra
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Figure 4. (a) The arbitrageurs’ total profit under the robust strategy conditional on y1.
(b) The total arbitrage profit under the REE strategy vs. that under the robust strategy.

profits. Intuitively, arbitrageurs’ under-trading is most prominent near the “kinks” of their

robust strategy. Their non-competitive profits must be strongest there.

Fig. 4(b) compares the total payoffs to arbitrageurs when they follow different types of

strategies. In the oligopolistic case (i.e., small N), the REE strategy allows them to earn

higher profits, because the robust strategy ignores a wide range of profit opportunities. As

N increases, the profitability of the REE strategy decays faster. In the competitive limit,

arbitrageurs compete away their profits under REE and restore market efficiency at t = 2.

In contrast, arbitrageurs’ total payoff converges to a positive value when they follow the

robust strategy [Fig. 4(b)]. This confirms Proposition 2.5 and indicates a non-competitive

effect. Their positive limiting payoff is attributable to the market power they amass beyond

the inaction zone, where they trade less aggressively than they would do under REE [Fig.

3 and Fig. 4(a)]. This collusive behavior does not involve any communication device or

explicit agreement. Their tacit collusion is not a result of financial constraints or trading

frictions. It is due to traders’ robust control for (non-Gaussian) model risk. Outside their

inaction region, the cartel effect will prevent the market from being fully efficient .

Corollary 2.5. In the limit N → ∞, arbitrageurs will restore market efficiency when they

follow the REE strategy, i.e., limN→∞ EA[P2(ỹ1, ỹ2)|ỹ1] = EA[ṽ|ỹ1] under Zo
2,n(s, y1; ξv) for

n = 1, ..., N ; however, market efficiency is hindered when a finite fraction of arbitrageurs

follow the robust strategy, i.e., limN→∞ EA[P2(ỹ1, ỹ2)|ỹ1] 6= EA[ṽ|ỹ1] under Z2,n(s, y1;K∗).

Proof. See Appendix A.5.
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By Corollary 2.5, it is difficult to restore market efficiency even if the economy hosts an

infinite number of risk-neutral arbitrageurs. To restore price efficiency in the second period,

it requires that (almost) every arbitrageur follows the REE strategy, that is, (almost) every

arbitrageur knows on average the correct fat-tail prior and has no aversion to uncertainty.

This is practically impossible because real-life arbitrageurs face different levels of model risks.

Moreover, there exist both internal and external pressures that force them to manage such

risks. Their robust control easily translates to their ambiguity aversion, which significantly

limits their willingness to eliminate mispricings. As reviewed in Gromb and Vayanos (2010),

existing studies mostly focus on different costs that limits arbitrageurs’ ability in trading.

Those frictions could be eased by injecting sufficient capital or removing certain constraints.

The mechanism here is different. First, model risk is an intrinsic problem which may not be

resolved easily. Second, arbitrageurs here are able to eliminate pricing errors; they hesitate to

do so because of their aversion to uncertainty24. Third, arbitrageurs’ hesitation in arbitrage

has two characteristics: (1) the large inaction region tells them to leave money on the table;

(2) their undertrading beyond the inaction region supports them as a “cartel”. Consequently,

even with an infinite number of risk-neutral arbitrageurs, a wide range of pricing errors can

persist in this economy. This is an endogenous outcome of model risk.

Nowadays, financial markets have been largely occupied by algorithmic traders. The surge

of quantitative modeling and machine-learning techniques can bring about hidden issues.

The present paper demonstrates that statistical arbitrageurs can use machine-learning tools

to combat model uncertainty and similar algorithmic “kinks” in their strategy can mitigate

their competition at the expense of market efficiency. This is a general implication, given

that many machine-learning algorithms have inaction regions and decision “kinks”.

Equilibrium Condition. In the liquidity regime µ < 0, an arbitrageur may find it profitable

to trade in the first period and take advantage of the aggressive feedback trading of other

arbitrageurs. One can verify Eq. (6) to see whether this unilateral deviation is profitable.

Corollary 2.6. The conjectured equilibrium strategy profile may fail in the liquidity regime

µ < µ∗(N), where µ∗(N) is the largest root that solves 1 + N−1
N+1
· 2

1+µ
= 4√

1−µ . Given a large

number of arbitrageurs using the same robust strategy, it can be profitable for an individual

trader to deviate from the conjectured no-trade strategy in the first period. This deviation in-

volves trading a large quantity z1 � K∗ to trigger the other arbitrageurs and then unwinding

the position at more favorable prices supported by the over-aggressive trading of others.

Proof. See Appendix A.6

24Arbitrageurs are risk-neutral but ambiguity-averse in this setup. Their hesitation to perform arbitrage
trading is not due to their risk aversion.
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3 Model of Savvy Informed Trader

In this section, I extend the previous model to investigate how strategic interaction

between the informed trader and the arbitrageurs affect equilibrium outcomes. This model

extension can be interpreted as an institutional informed trader optimizes the dynamic order-

execution algorithm by taking in account the responses of algorithmic arbitrageurs who use

simple machine-learning strategies to exploit her trades. The extended model can be used,

for example, to analyze controversial issues in algorithmic trading. It can shed light on

hidden risks when algorithmic traders pervade financial markets. Such risks may account

for market vulnerability and deserve more attention from regulators.

Let us consider a savvy informed trader who observes simultaneously the asset value ṽ

and the distribution-type signal s̃ at the beginning. She anticipates the momentum trading of

arbitrageurs and behaves strategically. In the Laplacian case, she will consider how her initial

trading affects arbitrageurs’ next responses. By backward induction, her expected total profit

contains a nonlinear term reflecting her consideration of arbitrageurs’ nonlinear inference.

As a result, her first-period trading strategy is no longer linear and the rational-expectations

equilibrium (REE) becomes intractable; more discussions are available in Appendix A.7.

To gain insights, the analysis in this section is devoted to a tractable model where strategic

arbitrageurs only consider linear-triggering strategies that converge to the REE. This model

keeps the basic structure (Table 1) elaborated in the previous section. I present a set of new

assumptions to clarify traders’ belief systems and information sets.

Assumption 3.1. As common knowledge, this market has fixed linear pricing schedules,

p̃1 = P1(ỹ1) = λ1ỹ1 and p̃2 = P2(ỹ1, ỹ2) = λ1ỹ1 +λ2ỹ2, that are exogenously given by Eq. (9).

Assumption 3.2. Arbitrageurs observe s̃ and have the correct priors: N (0, σ2
v) at s̃ = 0

and L(0, ξv) at s̃ = 1. For simplicity, arbitrageurs only consider linear-triggering strategies

of the form25: Z2,n(s = 1, y1;Kn) = Z∞(y1, ξv)1|Y1|>Kn, where Z∞ denotes the asymptotes of

their REE strategy to be determined in the limit REE. Each arbitrageur chooses the optimal

threshold, taking as given the best responses of other arbitrageurs and the informed trader.

Assumption 3.3. The risk-neutral informed trader observes both ṽ and s̃ at t = 0. This

fact and Assumption 3.3 are held as common knowledge among the informed trader and ar-

bitrageurs. In other words, the informed trader knows everything known by the arbitrageurs,

including their prior belief and their adherence to linear-triggering strategies. Arbitrageurs

also know everything known by the informed trader except the private information ṽ.

25Using linear-triggering strategies, arbitrageurs implicitly conjecture that the informed trader’s strategy
increases with her private signal. However, the Bayesian-rational strategy is not necessarily monotone.
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The above assumptions put our focus on the strategic interplay between informed trader

and arbitrageurs. The linear pricing rule in Assumption 3.1 can hold when market makers be-

lieve that they are living in the two-period Kyel model with the Gaussian prior ṽ ∼ N (0, σ2
v).

Arbitrageurs’ adherence to linear-triggering strategies in Assumption 3.2 is motivated by the

robust strategy discovered in Section 2. If traders worry about the complexity or overtrading

of the REE strategy, they may favor such simple algorithms. The suggested linear-triggering

strategies are determined by three parameters: slope, intercept, and threshold. These provide

well-defined trading rules amenable for computerized executions. Assumption 3.3 explains

the “savviness” of this informed trader who is Bayesian-rational, has correct knowledge about

the information structure, and anticipates the strategy space of arbitrageurs.

The timeline of this model is identical to Table 1, except that the informed trader observes

both ṽ and s̃ at t = 0. The strategies of informed trader and arbitrageurs are denoted by

X = 〈X1, X2〉 and Z = [Z1, ...,ZN ], where Zn = 〈Z1,n, Z2,n〉 is the n-th arbitrageur’s strategy

for n = 1, ..., N . The informed trader knows I1,x = {ṽ, s̃} before trading at t = 1 and

I2,x = {ṽ, s̃, ỹ1} before trading at t = 2. We can write x̃1 = X1(ṽ, s̃) and x̃2 = X2(ṽ, s̃, ỹ1).

Given the information sets of arbitrageurs, I1,z = {s̃} and I2,z = {s̃, ỹ1}, it is justified to

write z̃1,n = Z1,n(s̃) and z̃2,n = Z2,n(s̃, ỹ1) for n = 1, ..., N . Let π̃x =
∑2

t=1(ṽ − p̃t)x̃t be the

informed trader’s profit, and π̃z,n =
∑2

t=1(ṽ − p̃t)z̃t,n be the n-th arbitrageur’s profit. It is

common knowledge that the market-clearing prices are

p̃1 = P1(ỹ1) = λ1ỹ1 = λ1

(
X1(s̃, ṽ) +

N∑
n=1

Z1,n(s̃) + ũ1

)
, (24)

p̃2 = P2(ỹ1, ỹ2) = p̃1 + λ2ỹ2 = λ1ỹ1 + λ2

(
X2(s̃, ṽ, ỹ1) +

N∑
n=1

Z2,n(s̃, ỹ1) + ũ2

)
. (25)

To stress the dependence of prices on the strategies of traders, we write p̃t = p̃t(X,Z) for

t = 1, 2. We also write π̃x = π̃x(X,Z) and π̃z,n = π̃z,n(X,Z) because the strategy of informed

trader will affect the trading profits of arbitrageurs through direct competition and learning

interference, and arbitrageurs’ strategies also affect the informed trader’s profits through

competition and strategic interaction.

In this model, the informed trader and arbitrageurs have the same (consistent) belief

system. In particular, they have correct common knowledge about the mixture distribution of

ṽ. Since s̃ is observed by all of them at t = 0, the informed trader is aware of the time at which

arbitrageurs may trade. However, the informed trader cannot fool arbitrageurs into believing

a different type of ṽ. It is also common knowledge among them that every arbitrageur adheres

to the linear-triggering strategy with only one choice variable: the trading threshold.
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Definition of Equilibrium. The equilibrium here is defined as a pair of strategies (X,Z) such

that, under the market-clearing prices Eq. (24) and Eq. (25), the following conditions hold:

1. For any alternative strategy X′ = 〈X ′1, X ′2〉 differing from X = 〈X1, X2〉, the strategy

X yields an expected total profit no less than X′, and also X2 yields an expected profit

in the second period no less than any single deviation X ′2:

E[π̃x(X,Z)|ṽ, s̃] ≥ E[π̃x(X
′,Z)|ṽ, s̃], (26)

E[(ṽ − p̃2(〈X1, X2〉,Z))X2|ṽ, s̃, ỹ1] ≥ E[(ṽ − p̃2(〈X1, X
′
2〉,Z))X ′2|ṽ, s̃, ỹ1] (27)

2. For all n = 1, ..., N and for any alternative strategy profile Z′ differing from Z only in

the n-th component Z′n = 〈Z ′1,n, Z ′2,n〉, the strategy Z yields an expected profit no less

than Z′, and also Z2,n yields an expected profit in the second period no less than Z ′2,n:

E[π̃z,n(X,Z)|s̃] ≥ E[π̃z,n(X,Z′)|s̃], (28)

E[(ṽ − p̃2(·, Z2,n))Z2,n|s̃, ỹ1] ≥ E[(ṽ − p̃2(·, Z ′2,n))Z ′2,n|s̃, ỹ1]. (29)

The strategy profile on the right hand side of Eq. (29) only differs from (X,Z) at Z2,n.

In the Gaussian case, the informed trader’s strategy remains the same as those in Propo-

sition 2.1; arbitrageurs find no trading opportunity in this efficient market. To solve the equi-

librium in the fat-tail case, it is useful to conjecture first and verify later that arbitrageurs

will not trade in the first period. We first solve their second-period optimal strategy under

this no-trade conjecture and then check if it is indeed unprofitable for any arbitrageur to

trade in the first period. There is another implicit conjecture in the model development. To

follow the linear-triggering strategies, arbitrageurs think that the informed trader plays a

monotone strategy which increases with her private signal. This needs to be verified too.

3.1 Equilibrium with Linear-Triggering Strategies

In the fat-tail case, large order flows at t = 1 are mostly attributable to the informed

trading. This simplifies the inference problem for arbitrageurs as they can conjecture that

X1(s = 1, v)→ v

ρλ1

+ sign(v)cκσu, (30)

where ρ and c are parameters to be determined in the limit equilibrium. The intercept term,

cκσu, reflects how the informed trader exploits her opponents’ learning bias, κσu = ρλ1σ2
u

ξv
. If
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Eq. (30) holds, the arbitrageurs’ estimate of ṽ will be asymptotically linear with the past

order flow. In Appendix A.8, I solve the asymptotic X1(s = 1, v) and derive two algebraic

equations for ρ and c. Their solutions are given by

ρ(µ,N) =
2 + 5N +N2 + 2µ−Nµ− (N + 2)

√
N2 + (1 + µ)2 + 2N(3µ− 1)

2N(1− µ)
, (31)

c(µ,N) = −
3 +N − µ−

√
N2 + (1 + µ)2 + 2N(3µ− 1)

1 +N + µ+
√
N2 + (1 + µ)2 + 2N(3µ− 1)

· N
2
. (32)

Here, the parameter ρ decreases with µ and N , because poorer liquidity or higher competitive

pressure tomorrow can stimulate more aggressive informed trading today. The parameter c

increases (with µ) from −1 to 0, because poor future liquidity tends to discourage strategic

actions; as shown in Appendix A.9, this parameter reflects the extent of how the informed

trader strategically exploits the estimation bias of arbitrageurs. These two parameters can

determine the REE asymptotes, Z∞, which helps us to pin down the following equilibrium.

Proposition 3.1. In the liquidity regime of µ > µε where µε ≈ 0.005 according to numerical

results, the following equilibrium (X,Z) holds. First, arbitrageurs do not trade in the first

period, i.e., Z1,n = 0 for n = 1, ..., N . Their optimal linear-triggering strategy at t = 2 is

Z2,n(s, y1;K∗) = sZ∞(y1, ξv)1|y1|>K∗ = s
(1− µ)(ρ− 1)

N + 2

[
y1 − sign(y1)

ρ(1 + c)κσu
ρ− 1

]
1|y1|>K∗ ,

(33)

K∗(µ,N) = max

[
κσu,

ρ(1 + c)κσu
ρ− 1

]
= σu

2
√

1 + µ

3 + µ
max

[
ρ,
ρ2(1 + c)

ρ− 1

]
. (34)

For the informed trader, the equilibrium strategy at t = 2 is to trade

X2(v, s, y1;K∗) = (1− µ)
v − λ1y1

2λ1

− s
NZ∞(y1)1|y1|>K∗

2
. (35)

The strategy at t = 1 is monotone with her signal and solved by Eq. (126) in Appendix A.10.

Proof. See Appendix A.10.

Corollary 3.1. The linear-triggering strategy Eq. (33) implies the heuristic learning rule,

θ̂T = s · (v̂T − λ1y1)1|y1|>K∗, which estimates θ̃ = ṽ − p1, with

v̂T (y1; ξv) = ρλ [y1 − sign(y1)(1 + c)κσu] 1|y1|>κσu . (36)

Proof. See Appendix A.10 as well.
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(a) (b)

Figure 5. The threshold K∗(µ,N) and the strategy Z2,n(s, y1;K∗) in two liquidity regimes.

The learning rule v̂T looks similar to the MAP estimator v̂map in Eq. (19), except that

the horizontal intercept differs by a factor (1 + c). The learning threshold, κσu ≡ ρλ1σ2
u

ξv
,

is independent of the parameter c, because parallel shifts of the informed trading strategy

do not change the signal-to-noise ratio perceived by arbitrageurs. This learning threshold

depends on the parameter ρ, because more aggressive informed trading (smaller ρ) can make

arbitrageurs learn faster (smaller κσu). The overall learning rule, θ̂T (y1;K∗), is governed by

the threshold K∗, which is the maximum of learning threshold κσu and strategic intercept

term ρ(1+c)κσu
ρ−1

. Since this intercept increases (with µ) from 0 to 2κσu, it must cross κσu at

some intermediate value of µ. This indicates a kink in the equilibrium threshold:

Corollary 3.2. There are two liquidity regimes separated by the critical liquidity value

µc(N) =
√
N(N + 2)3 −N(N + 3)− 1 ∈

[
3
√

3− 5,
1

2

]
. (37)

For µ ∈ [0, µc], Z2,n(s, y1;K∗) is discontinuous at |y1| = K∗ = κσu which decreases with µ.

For µ ∈ [µc, 1], Z2,n(s, y1;K∗) is continuous and has K∗ = ρ(1+c)
ρ−1

κσu which increases with µ.

Proof. The critical liquidity µc is set by the crossover condition 1 = ρ(1+c)
ρ−1

or 1 + ρc = 0.

The rescaled threshold K∗/σu only depends on the liquidity level µ and the competition

condition N (Fig. 5). Under good liquidity µ ∈ [0, µc], the equilibrium threshold is set by

the learning hurdle of v̂T , i.e., K∗ = κσu. Traders who use a threshold lower than κσu may

engage in unjustified trading for a range of states where their estimated signal v̂T is zero.
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Under poor liquidity µ ∈ [µc, 1], the equilibrium threshold is set by the horizontal intercept

of θ̂T , i.e., K∗ = ρ(1+c)
ρ−1

κσu. Traders who use a threshold lower than this may do contrarian

trading for a range of states where their estimated residual signal θ̂T is zero. Arbitrageurs

will keep undercutting their thresholds as far as possible26 until they hit the lower bound

K∗ in Eq. (34) which excludes contrarian trading or any unjustified trading.
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Figure 6. The slope and intercept of Z2(y1) =
∑N

n=1 Z2,n(s = 1, y1;K∗) as a function of µ.

As shown in Fig. 6, the total arbitrage trading Z2(y1) ≡
∑N

n=1 Z2,n(s = 1, y1;K∗) has a

slope, N(1−µ)(ρ−1)
N+2

, which decreases from 1 to 0 as µ varies from 0 to 1. Its horizontal intercept,
ρ(1+c)
ρ−1

κσu, increases from 0 to 2
√

2σu. At constant market depth, the total arbitrage trading

collapses to the 45◦ line, limµ→0 Z2 = y11|y1|>κσu , regardless of the number N . This is

an “order-flow mimicking” strategy, since the total quantity traded by arbitrageurs exactly

mimics the total order flow they observed earlier. Also, this is like a pool of stop-loss orders

which get triggered to execute whenever the price change surpasses λ1κσu = 4
√

2
9

N+1
N
σv in

either direction. A function of the form, F (y) = y1|y|>K , is often called “hard-thresholding”

in machine learning. For µ > 0.5, arbitrageurs always use the “soft-thresholding” strategy.

Let’s look at the strategy of informed trader in different liquidity regimes. If market

liquidity at t = 2 is good (µ < µc), her initial strategy X1(s = 1, v;K∗) is bended toward

K∗ to distort arbitrageurs’ learning [Fig. 7(a)]. With x̃1 ≈ K∗ for a range of ṽ, it will be

difficult for arbitrageurs to infer the strength of ṽ from ỹ1 = x̃1 + ũ1. Their trading decisions

are error-prone because they are largely influenced by noise trading ũ1. The nonlinear pure

26As long as the informed trader’s strategy monotonically increases with her signal, it will be profitable
for arbitrageurs to undercut the threshold as much as possible.
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Figure 7. (a) the informed trader’s strategy X1(s = 1, v) under different µ. (b) the total
payoffs to arbitrageurs in two models under respective linear-triggering strategies.

strategy allows the informed trader to hide her signal temporarily and inhibit the response of

arbitrageurs. If future liquidity is poor (µ > µc), the informed trader will trade more at t = 1

and play the game more honestly. Poor liquidity discourages arbitrage trading and reduces

the incentive to distort their learning. Overall, the informed trader induces arbitrageurs to

trade more competitively. This disrupts their market power and the cartel effect identified

in the model of robust arbitrageurs. Facing the savvy informed trader, arbitrageurs can no

longer sustain extra market power nor earn noncompetitive profits at large N [Fig. 7(b)].

3.2 Disruptive Strategies and Price Manipulations

In this trading game with linear-triggering strategies, there is an implicit belief in the

arbitrageurs’ minds that the informed trader will play a monotone strategy which increases

with her signal. Numerically, this conjecture is found to hold in the liquidity regime where

µ > µε ≈ 0.005. However, the conjectured equilibrium becomes unstable when market depth

is almost constant (µ→ 0). If µ is arbitrarily close to 0, the total order flow from arbitrageurs

will closely mimic the order flow y1. This may invite the informed trader to trick them.

Corollary 3.3. At v = 0 and as µ → 0, the informed trader will first trade a sufficiently

large x1 to trigger arbitrageurs and then trade x2 = −y1 to offset their momentum trading,

i.e., limµ→0X2(v = 0, y1) = −y1 = − limµ→0 Z2(y1). This Bayesian-rational strategy has a

terminal position of x1 +x2 = −u1 which is zero on average, with an expected profit of λ1σ
2
u.
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Proof. This rational strategy follows from Eq. (33) and Eq. (35) by taking both limits v → 0

and µ→ 0. Detailed proof can be found in the Appendix A.11.

𝑣 𝑣

(a) (b)

Figure 8. (a) the optimal strategy of informed trader under µ = 10−4, N = 3 and ξv = 3.
(b) the total payoffs to different groups of traders.

As shown in Fig. 8(a), when the private signal v is very small, the informed trader places

a large order |x1| � K∗ = κσu to trigger arbitrageurs whose trading at t = 2 closely mimics

the total order flow observed at t = 1. This allows the informed trader to liquidate most of

her inventory at more favorable prices at t = 2. The terminal position E[x̃1 + x̃2|ṽ = v] is

almost linear with her private signal v, but her strategy in each period is non-monotone with

her signal. Fig. 8(b) shows the total payoffs to different groups of traders. Arbitrageurs

incur dramatic losses near the origin as they have been fooled by the informed trader who

earns a small profit on average. The losses of arbitrageurs mostly benefit market makers.

The non-monotone strategy seems disruptive and resembles controversial strategies in the

real world, including momentum ignition and stop-loss hunting. These schemes are usually

regarded as trade-based price manipulations by regulators. If such non-monotone strategies

are prohibited (by regulators) in the model, the informed trader at the state v = 0 will not

trade at t = 1. Instead, she will watch the market first and trade at t = 2 against either the

noise-driven price changes or the order flows from arbitrageurs who are falsely triggered.

Kyle and Viswanathan (2008) recommend two economic criteria for regulators to define

illegal price manipulations. These are pricing accuracy and market liquidity. Fig. 9 compares

the (unconditional) probability distributions of prices when the non-monotone strategy is
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Figure 9. The unconditional probability distributions of the prices p̃1 and p̃2 under the
non-monotone strategy versus the monotone strategy, given µ = 10−4, N = 3 and σv = 3

√
2.

allowed or banned. With the non-monotone strategy in Fig. 8(a), price distributions are

bimodal in both periods [Fig. 9(a)]. Pricing accuracy is poor as prices do not reflect the

fundamental value ṽ (with a unimodal distribution). Price volatilities are at least twice as

large as the fundamental volatility σv. If a common investor arrives and trades this asset, she

is likely to buy at a much higher ask price or sell at a much lower bid price. The bimodal price

pattern reflects a much wider bid-ask spread for common investors. In contrast, if regulators

set rules to ban such disruptive strategies, the price distributions become bell-shaped in both

periods with reasonable price volatilities and pricing accuracy [Fig. 9(b)].

Regulators need to sort out the economic conditions for the trade-base manipulations.

The results in this paper prescribe a list of conditions that could be necessary for the non-

monotone disruptive strategy.

(1) Speculators think that market makers set inaccurate prices by using incorrect priors.

(2) Speculators have fat-tail priors about the fundamental value or trading opportunities.

(3) There is strategic interplay between the informed trader and those speculators.

(4) Market depth is not decreasing when the informed trader liquidates her inventory.

(5) Traders face no trading costs, no inventory costs, nor threat from regulators.

(6) There is no other informed trader who could interfere with the disruptive strategy.

The (non-monotone) disruptive strategy may fail if any of these conditions is not satisfied.

It seems not easy at all, but the key condition is that the total feedback trading from
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speculators has a slope no less than one. This could happen if speculators underestimate the

actual number of speculators (N), since each speculator’s demand is inversely proportional

to the number of competitors (estimated by the speculator). This could also happen in the

liquidity regime with µ < 0, where the informed trader could dump her early inventory at

a lower cost and speculators may trade more aggressively. In the conjectured equilibrium,

the response slope of each speculator is given by (1−µ)(ρ−1)
N+2

. If all speculators keep using

this strategy in the liquidity regime µ < 0, the slope of their aggregate response will be

greater than one: N (1−µ)(ρ−1)
N+2

> 1. Over-trading makes speculators susceptible to “disruptive

attacks”. For the informed trader, the profits of tricking speculators can be outweighed by

the losses if she fails to liquidate the undesirable inventory in the second period.

4 Conclusion

This paper studies an equilibrium model of strategic arbitrage in the fat-tail environ-

ment. The presence of arbitrageurs is rationalized by applying random fat-tail shocks to

the standard Kyle model where market makers adhere to Gaussian beliefs. If arbitrageurs

are uncertain about the various of fat-tail shocks, their robust strategy under the max-min

choice criteria is operationally equivalent to the LASSO algorithm in machine learning. For

robustness, arbitrageurs choose to ignore a wide range of small (uncertain) mispricings and

take actions only on large (certain) ones. This strategy is highly effective given its infrequent

trading activity. As a result, many anomalies may be detected ex post by an external econo-

metrician based on historical data in this economy. The econometrician may conclude that

market inefficiency is due to arbitrageurs’ behavioral bias as they overlook those anomalies.

In fact, arbitrageurs are rational under their robust-control objective. They use Bayes rule

to carefully evaluate all possible states over their multiple priors. Arbitrageurs can amass

significant market power due to their under-trading beyond the kinks of robust strategy.

This cartel effect allows them to earn noncompetitive profits which do not vanish even if

their number goes to infinity. Therefore, price efficiency is further impaired.

If the informed trader strategically interacts with those arbitrageurs, she will try to distort

their learning and induce them to trade more aggressively. Under certain market conditions,

the informed trader may play a disruptive strategy that resembles real-life controversial

practices (like momentum ignition). Such trading schemes can distort the informational

content of prices and destabilize stock prices at the expense of common investors.
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A Appendix

A.1 Proof of Proposition 2.1

Under their common belief, the informed trader and market makers first conjecture that

arbitrageurs do not trade if the market is efficient. As in the two-period Kyle (1985) model,

they can seek a linear equilibrium (X,P), where P = 〈P1, P2〉 is the linear pricing strategy

of market makers. Let P1(y1) = λ1y1 and P2(y1, y2) = λ1y1 + λ2y2. The information set of

informed trader before trading at t = 2 is I2,x = {v, y1}. After t = 1, she conjectures the

price at t = 2 as

p̃2 = P2(ỹ1, ỹ2) = λ1y1 + λ2[X2(v, y1) + ũ2], under {I2,x,B}. (38)

Her optimal strategy at t = 2 under the information set I2,x and belief system B is

X2(v, y1) = arg max
x2

EB [(v − p̃2)x2|I2,x] =
v − λ1y1

2λ2

. (39)

The informed trader conjectures the price at t = 1 to be p̃1 = λ1[X1(v)+ ũ1] under {I1,x,B}.
With this notion and X2(v, y1), her subjective expected profit is a quadratic function of x1:

Πx(v, x1) = x1(v − λ1x1) + EB
[

(v − λ1(x1 + ũ1))2

4λ2

∣∣∣∣I1,x = {v}
]
. (40)

The first order condition is 0 = v − 2λ1x1 − v−λ1x1
2δ

, where δ ≡ λ2
λ1

. The optimal strategy is

X1(v) =
2δ − 1

4δ − 1
· v
λ1

=
v

ρλ1

, (41)

where ρ = 4δ−1
2δ−1

. The above results constitute Eq. (11) in Proposition 2.1. Market makers

hold the same Gaussian belief. As an extension of Proposition 1 in Huddart et al. (2001), it

takes some similar calculations to derive that λ1 =

√
2δ(2δ−1)

4δ−1
σv
σu

, where the ratio δ is given

by the largest root to the cubic equation:

8γδ3 − 4γδ2 − 4δ + 1 = 0. (42)

Here, γ > 0 is the ratio of noise trading volatilities over time. Under this pair of linear

strategies X and P, prices are conditional expectations of public information under market

makers’ belief B. So the informed trader and market makers believe that if they play X and

P no arbitrageurs would trade. This confirms the initial conjecture and completes the proof.
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A.2 Proof of Proposition 2.2

Arbitrageurs know that they are not anticipated to trade by the informed trader and market

makers. In the Gaussian case (s = 0), they have no informational advantage over market

makers. The market is efficient under the subgame perfect equilibrium (X,P) in Proposition

2.1. Indeed, arbitrageurs will not trade when s = 0. In the Laplacian case (s = 1), they

can exploit the pricing bias because market makers use the wrong prior. To solve the

equilibrium, I conjecture first and verify later that arbitrageurs do not trade in the first

period, i.e., Z1,n = 0 for n = 1, ..., N . Under this conjecture, I solve their optimal strategy at

t = 2. Arbitrageurs anticipate the informed trader’s linear strategy and the market-clearing

price,

P2(ỹ1, ỹ2) = λ1ỹ1 + λ2

(
X2(ṽ, ỹ1) +

N∑
n=1

Z2,n(s̃, ỹ1) + ũ2

)
. (43)

They estimate ṽ based on the observed y1 and their Laplace prior L(0, ξ̃). In the absence

of model risk (i.e., ξ̃ = ξ), the n-th arbitrageur solves her optimal strategy,

Zo
2,n(s = 1, y1; ξ) = arg max

z2,n
EA [(ṽ − p̃2)z2,n|I2,z] , (44)

under I2,z ≡ {s, y1} and the belief A = {s, ξ}. Let Zo
2,−n =

∑
m 6=n Z

o
2,m be the their aggregate

trading except the n-th arbitrageur’s. The first order condition for z2,n is

EA[ṽ|I2,z]− λ1y1 = λ2

(
EA[X2|I2,z] + 2z2,n + EA[Zo

2,−n|I2,z]
)
. (45)

Since EA[X2|I2,z] = v̂−λ1y1
2δλ1

where v̂ = v̂(y1; ξ) = EA[ṽ|I2,z], the solution is

Zo
2,n(s = 1, y1; ξ) =

v̂ − λ1y1

2δλ1

−
EA[X2|I2,z] + EA[Zo

2,−n|I2,z]

2
=
v̂ − λ1y1

4δλ1

−
EA[Zo

2,−n|I2,z]

2
.

(46)

The n-th arbitrageur conjectures that every other arbitrageur solves the same problem and

trades Zo
2,m = η · (v̂− p1) for any m 6= n, with a coefficient η to be solved. Eq. (46) becomes

Zo
2,n(s = 1, y1; ξ) =

v̂ − λ1y1

4δλ1

− (N − 1)
η(v̂ − λ1y1)

2
= [δ−1 − 2λ1η(N − 1)]

(v̂ − λ1y1)

4λ1

. (47)

Since each arbitrageur makes the same conjecture in a symmetric equilibrium, they find that

η = δ−1−2λ1η(N−1)
4λ1

, which has a unique solution

η =
1

2δλ1(N + 1)
> 0. (48)
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Without model risk, the optimal strategy of arbitrageurs under the Laplace prior L(0, ξ) is

Zo
2,n(s, y1; ξ) =

v̂(y1; ξ)− λ1y1

2(N + 1)δλ1

=
1− µ
N + 1

· θ̂(y1; ξ)

2λ1

, n = 1, ..., N. (49)

SinceX1(v) = v
ρλ1

, arbitrageurs have a Laplace prior for x̃1, denoted fL(x1) = ρλ1
2ξ

exp
(
−ρλ1|x1|

ξ

)
.

By Bayes’ rule, the posterior probability of the informed trading x1 conditional on y1 is

f(x1|y1) =
f(y1|x1)fL(x1)

f(y1)
=

ρλ1

2ξf(y1)
√

2πσ2
u

exp

[
−(y1 − x1)2

2σ2
u

− ρλ1|x1|
ξ

]
. (50)

The probability density function of ỹ1 = ṽ
ρλ1

+ ũ1 is found to be:

f(y1) =
ρλ1

4ξ
exp

(
ρ2λ2

1σ
2
u

2ξ2

)[
e−

ρλ1y1
ξ erfc

(
ρλ1σ

2
u/ξ − y1√
2σu

)
+ e

ρλ1y1
ξ erfc

(
ρλ1σ

2
u/ξ + y1√
2σu

)]
.

(51)

I define a dimensionless parameter κ ≡ ρλ1σu
ξ

and rewrite f(y1) in a dimensionless form

f(y1 = y′σu) =
κe

κ2

2

4σu

[
e−κy

′
erfc

(
κ− y′√

2

)
+ eκy

′
erfc

(
κ+ y′√

2

)]
, (52)

which is symmetric and decays exponentially at large |y′|. Bayes’ rule implies that

EA[x̃1 = x′σu|y1 = y′σu, ξ] = σu

∫ ∞
−∞

xf(x|y)dx = σu

∫ ∞
−∞

xf(y|x)f(x)

f(y)
dx, (53)

Given that X1(v) = v
ρλ1

, it is easy to derive the posterior expectation of ṽ explicitly:

v̂ = EA[ṽ|y1 = y′σu, ξ] =
κξ(y′ − κ)erfc

(
κ−y′√

2

)
erfc

(
κ−y′√

2

)
+ e2κy′erfc

(
κ+y′√

2

) +
κξ(y′ + κ)erfc

(
κ+y′√

2

)
erfc

(
κ+y′√

2

)
+ e−2κy′erfc

(
κ−y′√

2

) .(54)

The rescaled v̂/ξ is an increasing function of y′ with a single shape parameter κ. Asymptotic

linearity holds at |y′| � κ that v̂ → ρλ1[y1 − sign(y1)κσu]. All the second-order conditions

are easy to check. The REE corresponds to the equilibrium where all arbitrageurs have the

correct prior. Under REE, we have ξ = ξv = σv√
2

such that the shape parameter becomes

κ(ξ = ξv) =
ρλ1σu
ξv

=
4δ − 1

2δ − 1

√
4δ(2δ − 1)

4δ − 1
=

2√
1 + µ

, (55)

where µ ≡ 1− 1
δ

quantifies the percentage change of market depth in the second period.
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To verify that no arbitrageurs would trade in the first period, I examine the condition

Eq. (6). Suppose the n-th arbitrageur deviates from the conjectured strategy by trading a

nonzero quantity Zo,d
1,n = z1 6= 0 in the first period. Then the actual total order flow at t = 1

is ỹ′1 = x̃1 + z̃1 + ũ1, instead of ỹ1 = x̃1 + ũ1 in the conjectured equilibrium. Taking X, P, and

Zo
2,m(s, y′1; ξ) = s

v̂(y′1)−λ1y′1
2(N+1)δλ1

for any m 6= n as given, the n-th arbitrageur’s optimal strategy

at t = 2 conditional on the information set I ′2,z = {s, y1, z1} is

Zo,d
2,n(s, y′1; ξ) = s

v̂(y1; ξ)− λ1y
′
1

2δλ1

− s
EA[X2(ṽ, y′1)|I ′2,z] + EA[Zo

2,−n(s, y′1; ξ)|I ′2,z]
2

= s
v̂(y1; ξ)− λ1y

′
1

4δλ1

− s
Zo

2,−n(s, y′1; ξ)

2

= s
v̂(y1; ξ)− λ1y

′
1

4δλ1

− s(N − 1)[v̂(y′1; ξ)− λ1y
′
1]

4(N + 1)δλ1

= s
v̂(y1; ξ)− λ1y

′
1

2(N + 1)λ2

+ s
N − 1

4(N + 1)λ2

[v̂(y1; ξ)− v̂(y′1; ξ)]. (56)

If the n-th trader does not deviate from the no-trade strategy in the first period, her

optimal strategy should be Zo
2,n(s, y1; ξ) = s v̂(y1;ξ)−λ1y1

2(N+1)δλ1
, where y1 = x1 +u1. For convenience,

we just need to consider the case s = 1. Let’s add the notation that ∆P1 ≡ λ1(ỹ′1−ỹ1) = λ1z1,

∆v̂ ≡ v̂(ỹ′1; ξ)− v̂(ỹ1; ξ), ∆Z ≡ Zo,d
2,n(s, y′1; ξ)− Zo

2,n(s, y1; ξ) = − λ1z1
2(N+1)λ2

− N−1
4(N+1)λ2

∆v̂ and

∆P2 ≡ P2(X,Z′)− P2(X,Z)

= λ1z1 + λ2[∆Z +X2(ṽ, ỹ′1)−X2(ṽ, ỹ1) + Zo
2,−n(ỹ′1)− Zo

2,−n(ỹ1)]

= λ1z −
λ1z

2(N + 1)
− N − 1

4(N + 1)
∆v̂ − λ1z

2
+

(N − 1)(∆v̂ − λ1z)

2(N + 1)

=
λ1z1

2(N + 1)
+

N − 1

4(N + 1)
∆v̂ = −λ2∆Z, (57)

where Z′ differs from Z ≡ [〈0, Zo
2,1〉, ...〈0, Zo

2,N〉] only in the n-th element (Z′)n = 〈z1, Z
o,d
2,n〉.

Since ỹ1 = X1(ṽ) + ũ1, we have EA[ỹ1 · z1] = 0 and EA[v̂(ỹ1) · z1] = 0. The payoff difference is

∆Πd
z,n = EA[(ṽ − p̃2(X,Z′))Zo,d

2,n + (ṽ − p̃1(X,Z′))z1 − (ṽ − p̃2(X,Z))Zo
2,n|s̃ = 1, ξ̃ = ξ]

= EA[ṽz1 − z1p̃1(X,Z′) + ṽ∆Z −∆P2 · Zo,d
2,n − p̃2(X,Z) ·∆Z|s̃ = 1, ξ̃ = ξ]

= −λ1z
2
1 + EA[EA[(ṽ − p̃2(X,Z) + λ2Z

o,d
2,n)∆Z|ỹ1]]

= −λ1z
2
1 + EA

[(
v̂(ỹ1; ξ)− λ1ỹ1

N + 1
+ λ2∆Z

)
·∆Z

]
= −λ1z

2
1 +

EA[(λ1z1 + 1
2
(N − 1)∆v̂)2]

4(N + 1)2λ2

− N − 1

4(N + 1)2λ2

EA [(v̂(ỹ1; ξ)− λ1ỹ1) ·∆v̂] . (58)
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One can rewrite Eq. (58) in a symmetric form with respect to z1:

∆Πd
z,n = −λ1z

2
1 +

EA[(λ1z1)2 + 1
4
(N − 1)2(∆v̂)2 − (N − 1)[v̂(ỹ1; ξ)− λ1(ỹ1 + z1)]∆v̂]

4(N + 1)2λ2

= −λ1z
2
1 +

(λ1z1)2 + EA[1
4
(N − 1)2(∆v̂)2 − (N − 1)(θ̂(ỹ1 + z1; ξ)−∆v̂)∆v̂]

4(N + 1)2λ2

. (59)

This is an even function of z1 because one can use the symmetry of ỹ1 and v̂(·) to prove

EA[θ̂(ỹ1 − z1; ξ) ·∆v̂(ỹ1,−z1; ξ)] = EA[θ̂(ỹ1 − z1; ξ)(v̂(ỹ1 − z1; ξ)− v̂(ỹ1; ξ))]

= EA[θ̂(−ỹ1 − z1; ξ)(v̂(−ỹ1 − z1; ξ)− v̂(−ỹ1; ξ))]

= EA[−θ̂(ỹ1 + z1; ξ)(−v̂(ỹ1 + z1; ξ) + v̂(ỹ1; ξ))] = EA[θ̂(ỹ1 + z1; ξ) ·∆v̂(ỹ1, z1; ξ)].

The first term of Eq. (59) is the average cost to play z1 at t = 1, whereas the second term

represents the average profit from exploiting the biased response of other traders at t = 2.

The profit of this strategic exploitation has an upper limit which is achieved when all the

arbitrageurs have the extreme fat-tail prior ξ → ∞. In this limit, their response to the

past order flow is the strongest and exactly linear with y1: limξ→∞ Z
o
2,n = y1

(N+1)(2δ−1)
. Since

∆Πd
z,n(−z1) = ∆Πd

z,n(z1), we only need to consider the positive deviation. For any z1 > 0,

∆v̂(ỹ1, z1; ξ) ≡ v̂(ỹ1 + z1; ξ)− v̂(ỹ1; ξ) ≤ ρλ1(ỹ′1 − ỹ1) = ρλ1z1, (60)

where the equality holds at ξ →∞. Given that limξ→∞ θ̂(ỹ
′
1; ξ) = λ1(ρ− 1)(ỹ1 + z1), I find

∆Πd
z,n < lim

ξ→∞
∆Πd

z,n = −λ1z
2
1 + λ2

1

z2
1 + 1

4
(N − 1)2ρ2z2

1 − (N − 1)ρEA[((ρ− 1)(ỹ1 + z1)− ρz1)z1]

4(N + 1)2λ2

= −λ1z
2
1 + (1− µ)λ1z

2
1

[(N − 1)ρ+ 2]2

16(N + 1)2
(61)

The last expression of Eq. (61) is negative for any µ > µ∗(N) where µ∗(N) is the largest

root to the equation: 1 +
(
N−1
N+1

)
2

1+µ
= 4√

1−µ . The maximum of µ∗(N) is found to be µε ≡
limN→∞ µ

∗(N) ≈ −0.23191, which is the largest root to the cubic equation:

µ3 + 21µ2 + 35µ+ 7 = 0. (62)

In the liquidity regime of µ > µε ≈ −0.23191, it is indeed unprofitable for any individual

arbitrageur to trade in the first period, i.e., ∆Πd
z,n(z1) < 0 for any z1 6= 0. This confirms the

no-trade conjecture at t = 1 and completes the proof of Proposition 2.2.
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A.3 Proof of Proposition 2.3

All admissible strategies must lie in the area enclosed by Zo
2,n(y1, ξ → 0), Zo

2,n(y1, ξ →∞),

and the REE asymptotes Z∞(y1, K
∗). Any strategy that runs outside this region will violate

either the asymptotic requirement or the condition of convexity/concavity preservation. By

symmetry, we just discuss the positive domain where the REE strategy is always convex. To

satisfy the convexity-preservation rule, the first derivative of an admissible strategy,
∂Z′2,n
∂y1

,

can never decrease in the domain of y1 > 0. With a non-decreasing first derivative, the

admissible strategy can never go beyond the asymptote Z∞(y1, K
∗) and curve back to it.

For y1 ∈ [0, K∗], any selling decision located in the bottom triangle “a” would lose

money in the worst-case scenario (i.e., if the highest prior ξH is true, under which one should

buy). Similarly, any buying decision located in the up triangle “b” would lose money in the

worst-case scenario (i.e., if the lowest prior ξL is true, under which one should buy). This

argument indicates a no-trade strategy over y1 ∈ [0, K∗]. For any y1 > K∗, I will prove that

any buying decision Z ′2,n(y1) located inside the area “c” may either lose more money or earn

less money than the buying decision Z∞(y1, K
∗) determined by the REE asymptotes. Let

Z∆ ≡ Z ′2,n(y1)− Z∞(y1, K
∗). The difference of their payoffs under the lowest prior ξL is

EA[∆π̃z,n|y1, ξ̃ = ξL] = EA
[(
ṽ − λ1y1 − λ2(X2 + Z ′2,n + Z2,−n + ũ2)

)
Z ′2,n

∣∣∣∣y1, ξ̃ = ξL

]
−EA

[
(ṽ − λ1y1 − λ2(X2 + Z∞ + Z2,−n + ũ2))Z∞

∣∣∣∣y1, ξ̃ = ξL

]
= EA

[
Z∆

[
θ̃

2
− λ2(Z∞ + Z2,−n + ũ2)

] ∣∣∣∣y1, ξ̃ = ξL

]
− λ2Z

′
2,nZ∆.(63)

The worst-case scenario is that ξL is true and every other arbitrageur trades Z∞(y1, K
∗).

Let θ̂L(y1; ξL) ≡ EA[θ̃|y1, ξL] and ZL ≡ θ̂L
2(N+1)λ2

. Obviously, ZL < Z∞ < Z ′2,n and Z∆ > 0.

It is not a profitable deviation for anyone to trade more than Z∞(y1, K
∗), since

EA[∆π̃z,n|y1, ξ̃ = ξL] = λ2Z∆[(N + 1)ZL − Z∞ − (N − 1)Z∞]− λ2Z
′
2,nZ∆

= λ2Z∆((N + 1)ZL −NZ∞ − Z ′2,n) < 0. (64)

So the robust strategy is to follow the REE asymptote, Z∞(y1, K
∗), for any y1 > K∗.

By symmetry, the robust strategy is exactly Eq. (17). It remains to verify that no arbi-

trageur would find it profitable to trade in the first period, given that the other arbitrageurs

only trade at t = 2 using the same robust strategy. The proof of no-trade condition Eq. (6)

will be similar to the proof in Proposition 2.2; see Appendix A.6 for more details.
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A.4 Proof of Proposition 2.4 and Corollary 2.4

Under the prior L(0, ξv), the Maximum a Posteriori (MAP) estimate of ṽ given y1 is

v̂map = arg max
v

f(v|y1) = arg max
v

f(y1|v)fL(v) = arg max
v

exp

[
−

(y1 − v
ρλ1

)2

2σ2
u

− |v|
ξv

]
,

(65)

We need to find the point of v that minimizes (y1− v
ρλ1

)2 + 2σ2
u|v|
ξv

whose first order condition is

y1 = v
ρλ1

+κσusign(v). Graphically inverting this function y1(v) leads to the MAP estimator:

v̂map(y1; ξv) = sign(y1)ρλ1 max[|y1| − κσu, 0] = ρλ1 [y1 − sign(y1)κσu] 1|y1|>κσu , (66)

which has a learning threshold κσu = ρλσ2
u

ξv
. Eq. (66) is also known as “soft-thresholding”

in statistics. This gives a Bayesian interpretation for the LASSO algorithm. LASSO has a

similar objective function that involves an l1 penalty arising from the Laplace prior. The

MAP estimate v̂map is a continuous and piecewise-linear function of y1. One can also apply

the MAP learning procedure to directly estimate the residual signal θ̃ = ṽ − p1:

θ̂map = arg max
θ

exp

[
−

(y1 − θ+λ1y1
ρλ1

)2

2σ2
u

− |θ + λ1y1|
ξv

]
= arg min

θ

(y1 − θ+λ1y1
ρλ1

)2

2σ2
u

+
|θ + λ1y1|

ξv
.

(67)

The first order condition of this objective leads to

y1(θ) =
θ

ρλ1

+ sign(θ)
ρκσu
ρ− 1

. (68)

Graphically inverting the function y1(θ) yields the MAP estimator of θ̃:

θ̂map = (ρ−1)λ1 [y1 − sign(y1)K∗] 1|y1|>K∗ , where K∗ =
ρκσu
ρ− 1

=
λ1ρ

2σ2
u

(ρ− 1)ξv
=

√
2σv
λ1

. (69)

Since K∗ = ρ
ρ−1

κσu > κσu, one can also write θ̂map = (v̂map − λ1y1) 1|y1|>K∗ . This establishes

an observational equivalence to the robust strategy, since we find the following identity

Z2,n(s, y1;K∗) = sZ∞(y1, K
∗)1|y1|>K∗ = s

(v̂map − λ1y1) 1|y1|>K∗

2(N + 1)λ2

=
s · θ̂map

2(N + 1)λ2

. (70)

Therefore, if arbitrageurs directly use the MAP rule to estimate the mispricing signal θ̃, they

will get the same strategy Z2,n(s, y1;K∗). This MAP rule (posterior mode estimate) differs

from the posterior mean v̂(y1; ξv) which drives the REE strategy Zo
2,n(s, y1; ξv).
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Proof of Corollary 2.4: The MAP estimate for each asset value under the prior L(0, ξv) is:

v̂i,map = arg max
vi

f(vi|y1,i) = exp

[
−

(y1,i − vi
ρλ1

)2

2σ2
u

− |vi|
ξv

]
= arg min

vi

∣∣∣∣p1,i −
vi
ρ

∣∣∣∣2+
2(λ1σu)

2

ξv
|vi|,

(71)

which amounts to the LASSO objective in the Lagrangian form for i ∈ {1, ...,M}. This leads

to the trading algorithm below, which takes the price change p1,i for each stock as input:

Z2,n(p1,i, ξv) =
(ρ− 1) [λ1y1,i − sign(y1,i)λ1K

∗] 1|λ1y1,i|>λ1K∗

2(N + 1)λ2

=
ρ− 1

N + 1
· p1,i ± 2ξv

2λ2

1|p1,i|>2ξv

(72)

where we have used Eq. (16) to derive λ1K
∗ =
√

2σv = 2ξv given ξv = σv/
√

2. Q.E.D.

What if arbitrageurs all adhere to the Gaussian prior? First, they will not trade if their

Gaussian prior is identical to market makers’ Gaussian prior because they will find out

the market is efficient in the semi-strong sense. Arbitrageurs only trade when they have

different prior beliefs. Let’s model their Gaussian prior as ṽ ∼ N (0, ζ̃2), where ζ̃ is a

random variable reflecting the model uncertainty about the Gaussian prior dispersion. The

assumption of prior distribution only changes how arbitrageurs learn from prices without

affecting the informed trader’s strategy by Assumption 2.1. For any specific value of ζ̃ = ζ,

the arbitrageurs’ posterior belief about ṽ conditional on ỹ1 = ṽ
ρλ1

+ ũ1 is still Gaussian:

f(v|y1) =
f(y1|v)fG(v)

f(y1)
=

1

2πζσuf(y1)
exp

[
−(y1 − v/(ρλ1))2

2σ2
u

− v2

2ζ2

]
. (73)

Under the Gaussian prior of ṽ, arbitrageurs believe that y1 = ṽ
ρλ1

+ ũ1 ∼ N (0, ζ2/(ρλ1)2 +σ2
u)

for a given value of ζ. By projection theorem, they obtain a linear estimator,

v̂(y1; ζ) = EN [ṽ|y1, ζ] =
ζ2/(ρλ1)

ζ2/(ρλ1)2 + σ2
u

y1 =
ρλ1ζ

2

ζ2 + (ρλ1σu)2
y1. (74)

The mean of a Gaussian distribution is the same as its mode. So the MAP estimate of

ṽ coincides with the posterior mean, i.e., v̂map = v̂ in this case. The rational strategy for

arbitrageurs with Gaussian priors is always a linear function of the order flow y1:

Zo
2,n(y1; ζ) =

1

N + 1

v̂ − λ1y1

2δλ1

=
(ρ− 1)ζ2 − (ρλ1σu)

2

ζ2 + (ρλ1σu)2
· y1

2(N + 1)
, for n = 1, ..., N. (75)

Any uncertainty about the prior ζ only changes the slope of this linear strategy. Therefore,

the robust strategy must be linear under the max-min choice criteria.
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A.5 Proof of Corollary 2.5

If arbitrageurs follow the REE strategy when s = 1, the price at t = 2 is

p̃2 = λ1ỹ1 + λ2

[
X2 +

N∑
n=1

Zo
2,n(s, ỹ1; ξv) + ũ2

]
=
ṽ + λ1ỹ1

2
+

N

N + 1

v̂ − λ1ỹ1

2
+ λ2ũ2. (76)

As N →∞, the expectation of p̃2 = P2(ỹ1, ỹ2) under arbitrageurs’ information and belief is

lim
N→∞

EA[p̃2|I2,z] =
v̂ + λ1y1

2
+
v̂ − λ1y1

2
= v̂ = EA[ṽ|I2,z]. (77)

When arbitrageurs use the robust strategy, the price at t = 2 is

p̃2 = λ1ỹ1+λ2

[
X2 +

N∑
n=1

Z2,n(s, ỹ1;K∗) + ũ2

]
=
ṽ + λ1ỹ1

2
+

N

N + 1

v̂map − λ1ỹ1

2
1|ỹ1|>K∗+λ2ũ2.

(78)

The (ex ante) expected price under arbitrageurs’ information and belief has a positive limit:

lim
N→∞

EA[p̃2|I2,z] =
v̂ + λ1y1

2
+
v̂map − λ1y1

2
1|y1|>K∗ =

v̂ + v̂map
2

− v̂map − λ1y1

2
1|y1|>K∗ 6= v̂,

(79)

indicating price inefficiency in the limit of N →∞.

A.6 Proof of Corollary 2.6

If arbitrageurs only trade at t = 2 and follow the robust strategy we derived, each of them

may find that the total trading of other arbitrageurs has a response slope greater than one,

i.e., N−1
N+1
· 1−µ

1+µ
> 1 if −1 < µ < 0 and N > − 1

µ
. It may become profitable for any arbitrageur

to disrupt the equilibrium by trading a large quantity, z1 � K∗, in the first period so that

the other arbitrageurs will be triggered almost surely. If z1 >
(N−1)(µ−1)

2(Nµ+1)
K∗, the momentum

trading of arbitrageurs at t = 2 can overwhelm the trade z1. This may create opportunities

for the initial instigator to unwind her position at favorable prices.

Suppose the n-th arbitrageur (instigator) secretly trades z1 6= 0 when s = 1 to trick other

traders. Her objective at t = 2 is to maximize the minimum expected profit over all possible

priors: maxz′2,n∈Z minξ∈Ω EA[(ṽ − λ1ỹ
′
1 − λ2ỹ

′
2)z′2,n|I2,z], where ỹ′1 = X1(ṽ) + z1 + ũ1 and

ỹ′2 = X2(ṽ, ỹ′1) + z′2,n + Z2,−n(ỹ′1, K
∗) + ũ2. Here, Z2,−n =

∑
m6=n Z2,m(y′1, K

∗) =
(N−1)θ̂map(y′1)

2(N+1)λ2

is the total quantity traded by the other arbitrageurs (excluding the n-th one) who form the

estimate of θ̃ = ṽ−λ1y
′
1 based on y′1 without knowing that y′1 contains the secret trade z1. The

instigator’s estimate, θ̂map(y1) = [v̂map(y1)−λ1y1]1|y1|>K∗ = (ρ−1)λ1[y1−sign(y1)K∗]1|y1|>K∗ ,
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is however based on y1 = x1 + u1 instead of y′1, because she is aware of the order flow z1

secretly placed by herself. The strategy of this instigator in the second period reflects how

she strategically exploits the other traders’ overreaction due to her trade z1:

Z ′2,n(y1, z1) =
v̂map(y1)− λ1y

′
1

4λ2

1|y1|>K∗ −
N − 1

4(N + 1)λ2

[v̂map(y
′
1)− λ1y

′
1]1|y′1|>K∗

=
θ̂map(y1)

4λ2

− z1

4δ
− (N − 1)(ρ− 1)(y1 + z1 −K∗)

4(N + 1)δ

=
θ̂map(y1)

2(N + 1)λ2

−
(N + 1)z1 + (N − 1)(ρ− 1)[z1 + (y1 −K∗)1|y1|<K∗ ]

4(N + 1)δ
,(80)

where we used the condition z1 � K∗ so that 1|y′1=y1+z|>K∗ = 1 with probability arbitrarily

close to 1. Her expected total profit is Πd
z,n = EA[(ṽ− λ1ỹ

′
1)z1 + (ṽ− λ1ỹ

′
1 − λ2ỹ

′
2) ·Z ′2,n|I1,z]

and the extra profit attributable to her unilateral deviation (z1, Z
′
2,n) is

∆Πd
z,n = Πd

z,n − EA[(ṽ − λ1ỹ1 − λ2ỹ2) · Z2,n|s̃ = 1], (81)

where ỹ1 = X1(ṽ)+ ũ1, ỹ2 = X2(ṽ, ỹ1)+
∑N

n=1 Z2,n(ỹ1, K
∗)+ ũ2, and Z2,n(ỹ1, K

∗) = θ̂map(ỹ1)

2(N+1)λ2
.

Using the results EA[ỹ1 · z1] = 0, EA[θ̂map(ỹ1) · z1] = 0 and θ̂map1|y1|<K∗ = 0, we derive that

∆Πd
z,n = −λ1z

2
1 + λ2EA[(Z ′2,n(ỹ1, z1))2]− λ2EA[(Z2,n(ỹ1, K

∗))2]

= −λ1z
2
1 + λ2EA[(Z ′2,n(ỹ1, z1) + Z2,n(ỹ1, K

∗))(Z ′2,n(ỹ1, z1)− Z2,n(ỹ1, K
∗))]

= −λ1z
2
1 + λ2

(
λ1

λ2

)2

EA

[(
(N − 1)ρ+ 2

4(N + 1)
z1 +

(N − 1)(ρ− 1)

4(N + 1)
(ỹ1 −K∗)1|ỹ1|<K∗

)2
]

= −λ1z
2
1 + (1− µ)λ1z

2
1

[
(N − 1)ρ+ 2

4(N + 1)

]2

+ (1− µ)λ1
(N − 1)2(ρ− 1)2

16(N + 1)2
EA[(ỹ1 −K∗)21|ỹ1|<K∗ ].

Since δ = 1
1−µ and ρ = 3+µ

1+µ
by definition, the above expression is positive if the coefficient

in front of z2
1 is positive. This is equivalent to the condition:

1 +
N − 1

N + 1
· 2

1 + µ
>

4√
1− µ

. (82)

Given any N > 1, there exists a critical liquidity point µ∗(N) below which ∆Πd
z,n > 0.

For example, µ∗(N = 2) ≈ −0.68037, µ∗(N = 3) ≈ −0.54843, µ∗(N = 10) ≈ −0.33525,

limN→∞ µ
∗ = µε ≈ −0.23191. Thus, in the liquidity regime µ < µε ≈ −0.23191, if the num-

ber of arbitrageurs is large enough, the conjectured equilibrium Z = [〈0, Z2,1〉, ..., 〈0, Z2,N〉]
may fail, because it may permit profitable deviations (or disruptive strategies) at t = 1.
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A.7 Savvy Informed Trader: Rational-Expectations Equilibrium

For s = 1, we investigate the rational-expectations equilibrium (REE) in the model of savvy

informed trader who anticipates arbitrageurs and strategically interacts with them. Based

on I2,x = {v, s, y1}, the informed trader conjectures her residual demand at t = 2 and solves

X2(v, y1) = arg max
x2

E [(v − P2(ỹ1, ỹ2))x2|I2,x] = (1− µ)
v − λ1y1

2λ1

− E[Z2|I2,x]

2
. (83)

As the informed trader takes into account the price impact of all arbitrageurs, she will reduce

her trading quantity by one half of the total arbitrage trading that she expects at t = 2.

The information set of arbitrageurs right after t = 1 is I2,z = {s, y1}, which is nested into

the informed trader’s information set I2,x = {v, s, y1}. The n-th arbitrageur’s objective is

max
z2,n

E [z2,n (ṽ − λ1ỹ1 − λ2 [X2(ṽ, ỹ1) + z2,n + Z2,−n(ỹ1) + ũ2]) |I2,z] , (84)

from which she can solve the optimal strategy as below

Z2,n(y1) = (1− µ)
v̂ − λ1y1

4λ1

− E[Z2,−n|I2,z]

2
+

E[E[Z2|I2,x]|I2,z]

4
. (85)

Arbitrageurs are symmetric in terms of their information and objectives. The n-th arbi-

trageur conjectures that the other arbitrageurs will trade Z2,m = η ·(v̂−λ1y1) for m = 1, ..., N

and m 6= n, and she also conjectures the informed trader’s conjecture that all arbitrageurs

trade symmetrically Z2,n = η · (v̂ − λ1y1) for n = 1, ..., N . So her optimal strategy becomes

Z2,n(y1) =

(
1− µ
4λ1

− (N − 1)η

2
+
Nη

4

)
(v̂ − λ1y1). (86)

In a symmetric equilibrium, every arbitrageur conjectures in the same way and solves the

same problem. This symmetry requires η = 1−µ
4λ1
− (N−1)η

2
+ Nη

4
that has a unique solution

η = 1−µ
(N+2)λ1

. Thus the total order flow from arbitrageurs at t = 2 can be written as

Z2 =
N∑
n=1

Z2,n = Nη · (v̂ − λ1y1) =
N(v̂ − λ1y1)

(N + 2)λ2

. (87)

One can prove a simple result that Z2,n = E[X2|I2,z], i.e., every arbitrageur expects that the

informed trader on average trades the same quantity as she does. By Eq. (83) and (87),

E[X2(ṽ, ỹ1)|I2,z] =
E[ṽ|I2,z]− λ1y1

2λ2

− E[E[Z2|I2,x]|I2,z]

2
=
v̂ − λ1y1

2λ2

− Z2

2
=
Z2

N
= Z2,n. (88)
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As v̂ = E[ṽ|I2,z], we obtain the following

Z2,n(y1) = η(v̂ − λ1y1) =
1− µ

(N + 2)λ1

(E[ṽ|I2,z]− λ1y1) = E[X2|I2,z], (89)

X2(v, y1) =
v − λ1y1

2λ2

− Z2

2
=
v − λ1y1

2λ2

− N

N + 2

E[ṽ|I2,z]− λ1y1

2λ2

. (90)

One can rewrite the second-period informed trading strategy as

X2(v, y1) =
v − λ1y1

(N + 2)λ2

+
N

N + 2
· v − v̂

2λ2

, (91)

where the first term is proportional to her informational advantage over market makers

and the second term is proportional to her residual advantage over arbitrageurs. Let v̂ =

E[ṽ|I2,z] = g(y1). The informed trader will conjecture the average price at t = 2 to be

E[p̃2|I2,x] = E

[
λ1ỹ1 + λ2

(
X2 +

N∑
n=1

Z2,n + ũ2

)∣∣∣∣I2,x

]
=

(N + 2)v +Ng(y1) + 2λ1y1

2(N + 2)
, (92)

The informed trader’s expected profit from her second-period trading is

Π2,x(v, y1) = E[x2(v − p̃2)|I2,x] =
1

λ2

(
(N + 2)v −Ng(y1)− 2λ1y1

2(N + 2)

)2

. (93)

The informed trader needs to choose x1 that maximizes her total expected profits:

Πx(v) = max
x1

E [x1(v − λ1ỹ1) + Π2,x(v, ỹ1)|I1,x]

= max
x1

x1(v − λ1x1) +
1− µ
λ1

E

[(
(N + 2)v −Ng(ỹ1)− 2λ1ỹ1

2(N + 2)

)2 ∣∣∣∣I1,x

]
, (94)

where I1,x = {v, s = 1}. As regularity conditions permit, one can interchange expectation

and differentiation operations to derive the first order condition (FOC) for x1 = X1(v):

0 = v − 2λ1x1 −
1− µ
λ1

E

[
(N + 2)v −Ng(x1 + ũ1)− 2λ1(x1 + ũ1)

2(N + 2)
· Ng

′(x1 + ũ1) + 2λ1

N + 2

]
.

(95)

When s = 1, there does not exist a linear REE where the informed trader’s strategy X1

is a linear function of v. This is proved by contradiction: Suppose X1 is a linear function of

v, the posterior mean g(y1) = E[ṽ|I2,z] will be a nonlinear function of y1. With a nonlinear

g(y1), the FOC Eq. (95) does not permit a linear solution to X1(v). Nonlinearity makes Eq.

(95) and the REE intractable in general.
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A.8 Savvy Informed Trader: Asymptotic Linearity

Based on the asymptotic conjecture of X1(v) → v
ρλ1

+ cκσu in the high signal regime, arbi-

trageurs will find that the posterior distribution of x1 conditional on y1 is asymptotically

f(x1|y1)→ ρλ1

ξvf(y1)
√

2πσ2
u

exp

[
−(y1 − x1)2

2σ2
u

− ρλ1(x1 − cκσu)
ξv

]
. (96)

At large order flows, it is deduced that E[x̃1|y1]→ y1 − κσu and furthermore

E[ṽ|I2,z]→ ρλ1[y1 − (1 + c)κσu]. (97)

This result makes the informed trader’s FOC Eq. (95) for x1 = X1(v) linear again:

0 = v− 2λ1x1−
1

λ2

E

[(
(N + 2)v −Nρλ1[ỹ1 − (1 + c)κσu]− 2λ1ỹ1

2(N + 2)

)(
Nρλ1 + 2λ1

N + 2

) ∣∣∣∣I1,x

]
.

(98)

After some calculation with the notation δ ≡ λ2
λ1

= 1
1−µ , we get

0 = v − 2λ1x1 −
Nρ+ 2

2δ(N + 2)2
[(N + 2)v − (Nρ+ 2)λ1x1 +N(1 + c)κρλ1σu] . (99)

This FOC leads to a linear expression of x1 which conforms to the original linear conjecture:

X1(v) =
(N + 2)[2δ(N + 2)−Nρ− 2]

4δ(N + 2)2 − (Nρ+ 2)2

(
v

λ1

)
− Nρ(Nρ+ 2)(1 + c)κ

4δ(N + 2)2 − (Nρ+ 2)2
σu. (100)

Matching the first term leads to a quadratic equation for ρ:

− 2(ρ− 1)(Nρ+ 2) + 2δ(ρ− 2)(N + 2)2 = 0. (101)

There are two roots to this equation but only one of them is sensible as it increases with δ:

ρ(δ,N) =
N + δ(N + 2)2 − 2− (N + 2)

√
δ2(N + 2)2 − 2δ(3N + 2) + 1

2N
. (102)

Substituting δ = 1
1−µ into the above equation leads to

ρ(µ,N) =
2 + 5N +N2 + 2µ−Nµ− (N + 2)

√
N2 + (1 + µ)2 + 2N(3µ− 1)

2N(1− µ)
. (103)
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For N = 0, we have ρ = 3+µ
1+µ

which is identical to the parameter ρ in the previous model.

There are two more useful limits: limµ→0 ρ = 2
(
1 + 1

N

)
and limµ→1 ρ = 2. This equilibrium

parameter ρ decreases with µ and N . It is bounded in the range
[
2, 2(N+1)

N

]
. Now we match

the intercept terms and utilize the slope-matching relation to obtain

c = − N(2 +Nρ)

2δ(2 +N)2 − 2(2 +Nρ)
= −

3 +N − µ−
√
N2 + (1 + µ)2 + 2N(3µ− 1)

1 +N + µ+
√
N2 + (1 + µ)2 + 2N(3µ− 1)

· N
2
. (104)

In the competitive case, we have

lim
N→∞

c = lim
N→∞

−N(2 + 2N)

2δ(2 +N)2 − 2(2 + 2N)
= −1

δ
= −(1− µ). (105)

There are two more useful limits: limµ→0 c = −1 and limµ→1 c = 0.

Approximation to the rational equilibrium. The symmetry indicates that X1(−v) = −X1(v).

If X1(v) is monotone, it should cross the origin and be roughly linear in that neighborhood.

With the linearized conjecture X1(v → 0)→ v
αλ1

, one can use Taylor expansion of Eq. (14)

at small y1 to approximate E[ṽ|y1 � κσu] ≈ αβλ1y1, where α and β are determined by

βN [βN − (N + 2)]α2 + 2

(
(N + 2)2

1− µ
+ 2βN − (N + 2)

)
α− 4

(
(N + 2)2

1− µ
− 1

)
= 0,

β = 1 +

(
αλ1σu
ξ

)2

−
(
αλ1σu
ξ

) e
− (αλ1σu)

2

2ξ2

√
2
π

erfc
(
αλ1σu√

2ξ

) .
The first equation is derived from the FOC Eq. (95) and the second one is from the Taylor

expansion of Eq. (14). Given {µ,N, ξ}, one can numerically find a unique pair of positive

solutions to α and β. With constant depth (µ = 0), the first equation becomes α = 2(N+3)
N+2−Nβ

and the total demand from arbitrageurs becomes limµ→0 Z2 ≈ limµ→0
N(αβ−1)
N+2

y1 = (α −
3)y1 for small y1. The rational equilibrium is not tractable, but one can approximate the

arbitrageurs’ rational strategy by smoothly pasting the two regimes of asymptotic linearity.

There are different methods to make a smooth transition between two linear segments; for

example, any sigmoid functions that approach the Heaviside function may work. Here, I use

q(y) = 1
2
erfc[a(κσu−y)]+ 1

2
erfc[a(κσu+y)], with a tunable parameter a > 0 and approximate

the posterior mean estimate of ṽ by

v̂a(y1) ≈ [1− q(y1)]αβλ1y1 + q(y1)ρλ1[y1 − sign(y1)(1 + c)κσu]. (106)
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Clearly, v̂a → αβλ1y1 at |y1| � κσu and v̂a → ρλ1[y1 − sign(y1)(1 + c)κσu] at |y1| � κσu.

The figure below shows numerical approximations to the Bayesian-rational strategy Zo
2,n(s =

1, y1; ξ) under different ξ, compared with the linear-triggering strategy Z2,n(s = 1, y1;K∗).
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Figure 10. Approximate rational strategies and the linear-triggering strategy (red line).

A.9 Learning Bias and Strategic Informed Trading

Corollary A.1. Arbitrageurs tend to underestimate the private signal ṽ by a negative amount

−ρκλ1σu < 0. Anticipating this estimation bias, the informed trader in the high signal regime

will strategically shift her demand downward by an amount of cκσu < 0 at t = 1 and upward

by an amount of dκσu > 0 at t = 2 where the parameter d(µ,N) is given by Eq. (111). her

average terminal position contains an informational component and a strategic component,

that is, E[X1(v) +X2(v, ũ1)]→ X∗inf (v) +X∗str, where X∗str = (c+ d)κσu and

X∗inf =
N + 1 + µ+ ρ(1− µ)

N + 2

v

ρλ1

, (107)

Given any N > 0, the maximum of X∗inf (v) is at µc(N) =
√
N(N + 2)3 −N(N + 3)− 1.

Proof: In the asymptotic rational equilibrium we have shown E[ṽ|I2,z]→ ρλ1[y1−(1+c)κσu]

and y1 = X1(v) + ũ1 → (ρλ1)−1ṽ + cκσu + ũ1. Arbitrageurs tend to underestimate ṽ,

E[ṽ|I2,z]− ṽ = −ρλ1κσu + ρλ1ũ1 ∼ N [−ρλ1κσu, (ρλ1σu)
2], (108)

which has a negative mean −ρλ1κσu < 0. This learning bias of arbitrageurs entices the

informed trader to strategically exploit it. This can be seen from her asymptotic strategy:

X2(v, y1)→ (1− µ)

[
v − λ1y1

2λ1

− N

N + 2

(ρ− 1)y1 − (1 + c)κρσu
2

]
, (109)
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whose average contains both an informational component and a strategic one:

E[X2|ṽ = v] =
(1− µ)(1− ρ−1)

λ1(N + 2)
v +

(1− µ)(Nρ− 2c)

2(N + 2)
κσu. (110)

We define another parameter d for this strategic shift which decreases with µ and N :

d(µ,N) =
(1− µ)(Nρ− 2c)

2(N + 2)
=

2N(1− µ)

1 +N + µ+
√
N2 + (1 + µ)2 + 2N(3µ− 1)

. (111)

It has the following limit results: limµ→0 d = 1, limµ→1 d = 0, and limN→∞ d = 1− µ. Thus,

we have shown that X1 → v
ρλ1

+ cκσu where c < 0 and E[X2|v]→ (1−µ)(1−ρ−1)
λ1(N+2)

v+dκσu where

d > 0. This shows how the informed trader strategically exploit the arbitrageurs’ bias κσu.

The asymptotic terminal position of the informed trader can be decomposed into an infor-

mational term and a strategic term, that is, E[X1(v) + X2(v, ũ1)] → X∗inf (v) + X∗str where

X∗str = (c+ d)κσu ≥ 0. The information-based target inventory is found to be

X∗inf (v;µ,N) =
v

ρλ1

+
(1− µ)(1− ρ−1)

λ1(N + 2)
v =

N + 1 + µ+ ρ(1− µ)

N + 2
· v

ρλ1

=
1 + 3N + µ−

√
N2 + (1 + µ)2 + 2N(3µ− 1)

Nρ
· v

2λ1

. (112)

which is hump-shaped and reaches its maximum at

µc(N) =
√
N(N + 2)3 −N(N + 3)− 1. (113)

For example, X∗inf has its maximum 0.5359 v
λ1

at N = 1 and µc(N = 1) = 3
√

3−5 = 0.196152.

The informed trader manages to reach an informational target position roughly equal to v
2λ1

.
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Figure 11. The information-based target inventory X∗inf (v) and the strategic position X∗str.
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A.10 Proof of Proposition 3.1

The candidate linear-triggering strategy for each arbitrageur along the REE asymptotes is

Z2,n(s, y1;Kn) = sZ∞(y1, K
∗)1|y1|>Kn = s

(1− µ)(ρ− 1)

N + 2

[
y1 − sign(y1)

ρ(1 + c)κσu
ρ− 1

]
1|y1|>Kn .

(114)

For s = 1, this can be rewritten as

Z2,n(s, y1;Kn) =
ρλ1[y1 − sign(y1)(1 + c)κσu]− λ1y1

(N + 2)λ2

1|y1|>Kn

= η · [v̂T (y1; ξv)− λ1y1] 1|y1|>Kn , (115)

where η = 1−µ
(N+2)λ1

and the implied learning rule for ṽ is

v̂T (y1; ξv) = ρλ [y1 − sign(y1)(1 + c)κσu] 1|y1|>κσu . (116)

The learning threshold κσu here ensures that v̂T takes the same sign as y1.

Now I prove that in equilibrium every arbitrageur will choose the same threshold

K∗ = max

[
κσu,

ρ(1 + c)κσu
ρ− 1

]
. (117)

Intuitively, any trader choosing Kn lower than the learning threshold κσu may take actions

to trade over the states |y1| ∈ [Kn, κσu] where she actually learns nothing under her learning

rule, i.e., v̂T = 0 for |y1| ∈ [Kn, κσu]. To exclude irrational trading when the inferred signal is

zero, the equilibrium threshold must have a lower bound κσu. On the other hand, any trader

choosing Kn lower than the intercept ρ(1+c)κσu
ρ−1

may trade against the price trend (contrarian

trading) over the states |y1| ∈
[
Kn,

ρ(1+c)κσu
ρ−1

]
. This may go against the true (fat-tail) signal

and incur losses on average. Therefore, the condition Kn ≥ max
[
κσu,

ρ(1+c)κσu
ρ−1

]
could make

arbitrageurs dedicate to the momentum trading strategy which is desirable in our fat-tail

setup. When traders choose thresholds, they actually engage in Bertrand-type competition:

each of them will keep undercutting the threshold as long as it is more profitable than the

case she follows the common threshold used by other traders. Under this competition, the

equilibrium threshold is the boundary K∗ given by Eq. (117).

Let’s first show that to use any threshold K ′ lower than K∗ cannot be an equilibrium. It

suffices to show that when everyone else uses K−n = K ′ < K∗, it is a profitable deviation for
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the n-th trader to choose Kn = K∗. We need to compare the difference of expected profits:

E [π̃z,n(ỹ1;Kn = K∗, K−n = K ′)− π̃z,n(ỹ1;Kn = K ′, K−n = K ′)|ỹ1 = y1]

= E

[{
−η
(

1

2
− λ1η(N − 2)

2(1− µ)

)
(v̂T − λ1y1)2 − η(v̂T − λ1y1)

ṽ − v̂T
2

}
1K′<|y1|<K∗

∣∣∣∣y1

]
= −η

2

[
4Θ2

N + 2
+ (v̂ − v̂T )Θ

]
1K′<|y1|<K∗ , (118)

where Θ = v̂T − λ1y1 is negative for K ′ < y1 < K∗ and positive for K ′ < −y1 < K∗.

For the case K∗ = κσu, we have v̂T = 0 but v̂ ≥ 0 for |y1| ∈ [K ′, κσu]. It means the last

expression of Θ is a parabola that opens downward and crosses the origin. Since Θ takes

the opposite sign of y1 and v̂ for K ′ < |y1| < K∗, the last expression is strictly positive for

K ′ < |y1| < K∗. Similar arguments can be applied to the case K∗ = ρ(1+c)κσu
ρ−1

. Therefore,

E [π̃z,n(ỹ1;Kn = K∗, K−n = K ′)− π̃z,n(ỹ1;Kn = K ′, K−n = K ′)] > 0 for K ′ < K∗, i.e., any

threshold less than K∗ cannot be an equilibrium threshold.

Similarly, any threshold K ′ larger than K∗ cannot be an equilibrium threshold either.

As before, it suffices to show that the deviation is profitable for any trader by just choosing

Kn = K∗ less than K ′ used by others. The payoff difference given y1 is positive as well:

E [π̃z,n(ỹ1;Kn = K∗, K−n = K ′)− π̃z,n(ỹ1;Kn = K ′, K−n = K ′)|ỹ1 = y1]

= E

[
η(v̂T − λ1y1)1K∗<|y1|<K′

[
ṽ − λ1y1

2
− λ1η(v̂T − λ1y1)

1− µ

] ∣∣∣∣y1

]
=

η

2

[
N

N + 2
Θ2 + (v̂ − v̂T )Θ

]
1K∗<|y1|<K′ > 0. (119)

It rules out any threshold larger than K∗ to be an equilibrium. So the only possible equilib-

rium choice is K∗. When every trader uses the same threshold K∗, no one will deviate.

Now look at the informed trader in this algorithmic trading game. If arbitrageurs all use

the same threshold K (which can be general), the informed trader at t = 2 will trade

X2(v, y1;K) = (1− µ)
v − λ1y1

2λ1

− sN(1− µ)(ρ− 1)

2(N + 2)

[
y1 − sign(y1)

ρ(1 + c)κσu
ρ− 1

]
1|y1|>K ,

(120)

and pick X1(v,K) that maximizes her total payoff. The price at t = 2 can be written as

p̃2 = λ1y1 + λ2

(
x2 + Z21|y1|>K + ũ2

)
=


(N+2)ṽ+2λ1y1+Nv̂T

2(N+2)
+ λ2ũ2, if |y1| > K

ṽ+λ1y1
2

+ λ2ũ2, if |y1| < K,
(121)
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Figure 12. Left: Trading profits if someone deviates from K∗. Right: Learning rule v̂T (y1).

depending on whether the arbitrageurs are triggered. The informed trader’s expected profit

in the second period is also contingent on the state of arbitrageurs:

Π2,x(v, y1;K) = E[x2(v − p̃2)|I2,x] =

 1
λ2

[
(N+2)v−Nv̂T (y1)−2λ1y1

2(N+2)

]2

, if |y1| > K

1
λ2

(
v−λ1y1

2

)2
, if |y1| < K.

(122)

Note that her expected profit in the second period is always positive because the informed

trader fully anticipates the response of arbitrageurs. The informed trader needs to determine

x1 = X1(v;K) that maximizes the total expected profit from both periods. The calculation

of her total profit, conditional on the private signal v, can be decomposed into three com-

ponents:

Πx(v, x1;K) = max
x1

E
[
Π1,x + Π2,x1|ỹ1|<K + Π2,x1|ỹ1|>K |I1,x

]
= x1(v − λ1x1) + E

[
(v − λ1(x1 + ũ1))2

4λ2

1|x1+ũ1|<K

∣∣∣∣I1,x

]
+E

[
[(N + 2)v −Nv̂T (x1 + ũ1)− 2λ1(x1 + ũ1)]2

4(N + 2)2λ2

1|x1+ũ1|>K

∣∣∣∣I1,x

]
.(123)

On one hand, the informed trader may want to trade less to avoid triggering arbitrageurs

and take full advantage of her information at t = 2. On the other hand, it is costly to hide

her private signal if it is strong. This trade-off will reflect in the relative values of Π−2,x and

Π+
2,x which are defined below. Hereafter, I set σu = 1 for convenience. By direct integration,
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one can derive their expressions:

Π−2,x(v, x1;K) ≡ E[Π2,x1|ỹ1|<K |I1,x] = E

[
(v − λ1ỹ1)2

4λ2

1|ỹ1|<K

∣∣∣∣I1,x

]
=

(1− µ)[2v − λ1(K + x1)]φ(K − x1)

4
− (1− µ)[2v + λ1(K − x1)]φ(K + x1)

4

+
(1− µ)[(v − λ1x1)2 + λ2

1]

8λ1

[
erf

(
K − x1√

2

)
+ erf

(
K + x1√

2

)]
, (124)

Π+
2,x(v, x1;K) ≡ E[Π2,x1|ỹ1|>K |I1,x]

= E

[
[(N + 2)v −Nv̂T (ỹ1)− 2λ1ỹ1]2

4(N + 2)2λ2

1|ỹ1|>K

∣∣∣∣I1,x

]
=

(1− µ)(Nρ+ 2)

4(N + 2)2
[−2Nwρλ1 − 2(N + 2)v + λ1(Nρ+ 2)(K + x1)]φ(K − x1)

+
(1− µ)(Nρ+ 2)

4(N + 2)2
[−2Nwρλ1 + 2(N + 2)v + λ1(Nρ+ 2)(K − x1)]φ(K + x1)

+
1− µ

8(N + 2)2λ1

{
[(N + 2)v +Nwρλ1 − (Nρ+ 2)λ1x1]2 + λ2

1(Nρ+ 2)2
}

erfc

(
K − x1√

2

)
+

1− µ
8(N + 2)2λ1

{
[(N + 2)v −Nwρλ1 − (Nρ+ 2)λ1x1]2 + λ2

1(Nρ+ 2)2
}

erfc

(
K + x1√

2

)
.

(125)

where w = (1+c)κσu is the horizontal intercept of v̂T (y1) and where φ(K±x) = 1√
2π
e−

(K±x)2
2

denotes the probability density function of the standard normal distribution (with σu = 1).

Taking the first derivative, dΠx
dx1

= 0, one can find the FOC for X1(v;K) = x1:

0 = v − 2λ1x1 −
(1− µ)(v − λ1x1)

4

[
erf

(
K − x1√

2

)
+ erf

(
K + x1√

2

)]
+

(1− µ)[(v − λ1K)2 + 2λ2
1]

4λ1

[φ(K + x1)− φ(K − x1)] + (1− µ)Kvφ(K + x1)

+
(1− µ)φ(K − x1)

4λ1(N + 2)2
{[Kλ1(Nρ+ 2)− (N + 2)v]2 + 2λ2

1(Nρ+ 2)2

+λ1wNρ[λ1wNρ− 2Kλ1(Nρ+ 2) + 2(N + 2)v]}

−(1− µ)φ(K + x1)

4λ1(N + 2)2
{[Kλ1(Nρ+ 2) + (N + 2)v]2 + 2λ2

1(Nρ+ 2)2

+λ1wNρ[λ1wNρ− 2Kλ1(Nρ+ 2)− 2(N + 2)v]}

−(1− µ)(Nρ+ 2)

4(N + 2)2
[(N + 2)v +Nwρλ1 − (Nρ+ 2)λ1x1]erfc

(
K − x1√

2

)
−(1− µ)(Nρ+ 2)

4(N + 2)2
[(N + 2)v −Nwρλ1 − (Nρ+ 2)λ1x1]erfc

(
K + x1√

2

)
. (126)
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This FOC equation defines the informed trader’s optimal strategy X1 = x1(v;K) at t = 1.

The unconditional expected total profit of all arbitrageurs is

Πtot
z ≡ E

[
N∑
n=1

π̃z,n(ṽ, ũ1, ũ2)

]
= E[(ṽ − p̃2)Z21|y1|>K ]. (127)

After solving x1 = X1(v;K) given any v, one can compute the conditional expected profit:

E

[
N∑
n=1

π̃z,n(ṽ, ũ1, ũ2)

∣∣∣∣ṽ = v

]
= E

[
(ṽ − λ1ỹ1 − λ2 (X2(ṽ, ỹ1) + Z2(ỹ1)))Z2(ỹ1)1|ỹ1|>K |ṽ = v

]
=

N(1− µ)

2(N + 2)2
[wλ1ρ(2Nρ+ 2−N) + (ρ− 1)((N + 2)v − λ1(Nρ+ 2)(x1 +K))]φ(K − x1)

+
N(1− µ)

2(N + 2)2
[wλ1ρ(2Nρ+ 2−N)− (ρ− 1)((N + 2)v − λ1(Nρ+ 2)(x1 −K))]φ(K + x1)

− N(1− µ)

4(N + 2)2
[(N + 2)v(ρ(w − x1) + x1) + λ1Nρ

2(1 + (w − x1)2)

−λ1ρ(N − 2)(x2
1 − wx1 + 1)− 2λ1(1 + x2

1)]erfc

(
K − x1√

2

)
+
N(1− µ)

4(N + 2)2
[(N + 2)v(ρ(w + x1)− x1)− λ1Nρ

2(1 + (w + x1)2)

+λ1ρ(N − 2)(x2
1 + wx1 + 1) + 2λ1(1 + x2

1)]erfc

(
K + x1√

2

)
, (128)

where w ≡ (1 + c)κσu and σu = 1. Finally, the unconditional total payoff to arbitrageurs is

Πtot
z = E

[
N∑
n=1

π̃z,n(ṽ, ũ1, ũ2)

]
=

∫ +∞

−∞
fL(v)E

[
N∑
n=1

π̃z,n(ṽ, ũ1, ũ2)

∣∣∣∣ṽ = v

]
dv. (129)

A.11 Proof of Corollary 3.3

Since limµ→0 c = −1 and limµ→0 ρ = 2 + 2
N

, one can derive that for the informed trader

lim
v→0

lim
µ→0

Πx = λ1 −
3λ(1 + x2

1)

8

[
erf

(
K − x1√

2

)
+ erf

(
K + x1√

2

)]
+

3λ1

4
{[φ(K − x1) + φ(K + x1)]K + [φ(K − x1)− φ(K + x1)]x1},(130)
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which only depends on x1, λ1, and K. The FOC equation in this limiting case becomes

3λ

4

[
(2 +K2) [φ(K − x1)− φ(K + x1)]− x1

(
erf

(
K − x1√

2

)
+ erf

(
K + x1√

2

))]
= 0.

(131)

Using the equilibrium threshold K∗(µ = 0) = κ with σu = 1, we can rewrite the FOC as:

x1

2 + κ2
=

φ(κ− x1)− φ(κ+ x1)

erf
(
κ−x1√

2

)
+ erf

(
κ+x1√

2

) , (132)

which may have multiple solutions: one is obviously x1 = 0 and the other two are ±∞.

As long as the informed trader trades a sufficiently large quantity x1 � κ (instead of±∞),

the probability of triggering arbitrageurs to trade is arbitrarily close to one. In the second

period, the informed trader’s optimal strategy is found to be limµ→0X2(v = 0, y1) = −y1,

which exactly offsets the total quantity traded by arbitrageurs limµ→0 Z2(y1) = y1. Thus,

the terminal position of the informed trader is x1 + x2 = −u1 which is zero on average. The

expected profit from this disruptive strategy is found to be Πx ≈ λ1σ
2
u, which is limited by

the noise trading volatility in the first period.
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We study how high-frequency traders (HFTs) strategically decide their speed level

in a market with a random speed bump. If HFTs recognize the market impact of their

speed decision, they perceive a wider bid-ask spread as an endogenous upward-sloping

cost of being faster. We find that the speed elasticity of the bid-ask spread (slope of the

endogenous cost function) negatively depends on the expected length of a speed bump

since a longer delay makes market makers insensitive to HFTs’ speed increment. Hence,

speed bumps promote the investment of HFTs in high-speed technology by reducing the

marginal cost of getting faster, undermining their intended purpose of protecting market

makers. Depending on the expected length of a bump and exogenous cost of speed, an

arms race among HFTs exhibits both complementarity and substitution. These findings
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1 Introduction

“Never before in human history have people gone to so much trouble and

spent so much money to gain so little speed.”—Flash Boys: A Wall Street

Revolt by Lewis (2014).

The ever-increasing speed of electronic financial markets pushes traders to be lightning

fast. They are obsessed with being the first to acquire information for trading purposes,

spending significant amounts of money on high-speed technologies, such as custom-built

fiber-optic cables and microwave/millimeter-wave transmissions. With these sophisticated

tools, high-frequency traders (HFTs) can extract information from massive layers of signals

at the speed of light.

Regulators are concerned about how quickly HFTs can access and act on information.

It is argued that the informational advantage that HFTs obtain through increasing speed

exposes market makers to the cost of adverse selection in the sense of Glosten and Milgrom

(1985). That is, HFTs trade with market makers only if they receive news that is not yet

publicly available and find market makers’ orders outdated and mispriced.1 By exploiting

their speed advantage, HFTs “snipe” stale quotes provided by market makers (Budish et al.,

2015).

The speed race by HFTs has prompted some exchange platforms to slow down HFT-

involved transactions by introducing speed bumps. A speed bump imposes a delay on the

arrival or execution of orders at a market, aiming to protect traders from exposure to the

above-mentioned risks. For example, the Investors Exchange (IEX) adopts a 350-microsecond

speed bump on incoming orders and outgoing information from the exchange. The Ae-

quitas NEO Exchange and TMX Group, both Canadian exchanges, also apply a few mil-

liseconds of random delay to non-cancellation orders.2 Specifically, the speed bump in the

latter markets aims to slow down only HFT-involved orders by classifying traders into high-

frequency (latency-sensitive) and non-high-frequency categories.3

1One of the most frequently cited market benefits is liquidity provision by high-frequency market makers.

However, extremum events, such as the May 2010 “flash crash,” make regulators increasingly concerned that

the liquidity provided by HFTs is likely to evaporate when it is most needed. See, Conrad et al. (2015) for the

empirical study of this liquidity evaporation.
2See Appendix F of Baldauf and Mollner (2017) which provides a comprehensive summary of institutional

details.
3Depending on the institutional details, the types of traders (or orders) to be protected may change. For

2



Table I: Top 5 Firms by Volume on BrokerTec

Firm Volume($ millions) Market Share
Jump Trading 2,291,000 28%
Citadel LLC 1,004,000 12%

Teza Technologies 905,000 11%
KCG 798,000 10%

JP Morgan 649,000 8%

Note: It tabulates shares in May-June, 2015. Data regarding top-10
HFTs is also available and indicates a similar result. Source: Risk.com,
October 2015, Issue 10.

This paper analyzes the effect of speed bumps on speed decision of HFTs and on the

adverse selection cost for market makers by focusing on a non-cancellation delay aimed at

hampering sniping behavior of HFTs.4 The key result is that a speed bump can increase the

speed of HFTs and worsen adverse selection for market makers in contrast to its intended

purpose. Specifically, once we allow HFTs to strategically choose their speed level (i.e, they

are aware of the reaction of price setters), a speed bump increases the marginal benefit of

being faster.

The strategic motive in the speed decision arises because major high-speed financial in-

stitutions have significant shares in the trading volume in markets.5 For example, Table I

shows the top five high-frequency financial institutions and their shares in the BrokerTec

platform, through which more than half of the U.S. Treasury is traded. Typically, HFTs ben-

efit from a huge number of small, short-lived transactions, and each trading decision does

not impact the equilibrium price. However, when an institution decides a speed technol-

ogy, she becomes aware of the market impact of her choice because a sizable number of

transactions involve the same speed technology and affect the equilibrium price.

instance, the speed bump in the IEX is more likely to protect pegged orders from non-HFTs, but not market

makers on a lit LOB, from being sniped by HFTs. The non-cancellation delay and the HFT-specific delay

adopted by the two Canadian exchanges are more likely to save market makers from adverse selection cost.
4The term “speed” includes the choice of the geographical location of the firm’s information server. For

example, a spot in the mid-Atlantic ocean is the optimal point to exploit the price difference between the

NYSExchange and the London Stock Exchange.
5There is anecdotal evidence for HFTs being aware of the market impact of their speed choice. For example,

clients who purchase a speed device from a trade technology company often try to hide it by asking to peel

corporate logos from shipments due to confidentiality clauses. See, for example, https://www.wsj.com/ and

Lewis (2014).
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As the literature points out, the faster the HFTs, the more severe adverse selection the

market makers face. Thus, a higher speed puts positive pressure on the bid-ask spread and,

in turn, reduces the sniping profit of HFTs. Therefore, the spread works as an endogenous

upward-sloping cost of being faster. Importantly, it provides a channel through which a

speed bump affects the speed decision of HFTs, because market makers’ adverse selection

risk, as well as the equilibrium spread, is affected by a speed bump. This channel is novel

since an exogenous sunk cost of speed analyzed in the literature is independent of a bump.

First, we consider a simple benchmark structure to separate the key mechanism: ho-

mogeneous markets with a single HFT, having a random speed bump of a δ-period with

λ = E[δ]. If λ increases, market makers know that they are less likely to be picked off by

the HFT. As a result, they do not care much about a marginal increase in the HFT’s speed,

and their pricing behavior, i.e., the bid-ask spread, becomes less responsive. This induces

a lower endogenous marginal cost of speed investment for the HFT, providing her with a

stronger incentive to be faster.

As an extension, we consider a speed competition among multiple HFTs—an “arms

race”—and allow them to serve not only as snipers but also as high-frequency market mak-

ers. In the literature, such as Foucault et al. (2003), traders’ speed levels interact with each

other because one trader’s speed affects other traders’ probability of successful snipe, lead-

ing to the strategic substitution. In contrast, our endogenous cost of speed (bid-ask spread)

provides a new channel for the interaction because the spread is an equilibrium variable.

Specifically, depending on the relative significance of the exogenous and endogenous costs

of speed, the arms race can exhibit both strategic complementarity and substitution.

If the exogenous sunk cost of speed is relatively small, an arms race creates strategic

complementarity, because the speed-up by an HFT as a market maker reduces the sensitivity

of her spread to other HFTs’ speed-up. Also, a faster market maker decreases the sniping

probability of snipers, making them care less about an adverse price movement caused by

their speed increase. As a result, a faster market maker reduces snipers marginal cost of

being faster and enhances their investment in speed.

In this situation, the introduction of a speed bump can backfire because a higher λ makes

each HFT willing to be faster, triggering a fiercer speed competition and positive externality

due to the complementarity. Although a speed bump protects market makers and miti-

gates adverse selection via its direct effect, the equilibrium speed increases substantially
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and dominates the direct protection, worsening adverse selection risk.

Therefore, our strategic model with the endogenous cost of speed proposes opposite

results to a traditional model with an exogenous sunk cost. We can think of these as two

extreme cases: By introducing exogenous cost in our model and adjusting the exogenous

cost parameter, for example, our model navigates between these extremes, leading to rich

equilibrium behavior.

While our model is theoretical, we propose some testable implications and policy discus-

sions. For example, our model implies that the SEC’s policy in 2017 that approved the IEX

(with a bump) as a National Securities Exchange can strengthen HFTs’ demand for speed

technologies, thereby allowing exchange platforms to charge higher fee for the direct data

feed and colocation service. Our model indicates that this effect undermines the recent at-

tempt of the SEC to block the exchange platforms from increasing the price for their data

access.6

1.1 Literature Review

This paper contributes to the literature on high-frequency trading and market structure (see

Jones, 2013; O’Hara, 2015; Menkveld, 2016 for reviews). Biais et al. (2015) analyze the effect

of an arms race and show that a higher speed triggers more severe adverse selection for

slow traders. Delaney (2018) describes the speed decision of HFTs as a model of irreversible

investment with an optimal stopping time, while Bongaerts and Van Achter (2016) view

it from a perspective of high-frequency market making.7 However, the speed decision in

these models is discrete (i.e., being fast or not), and they abstract away from addressing the

implications of the equilibrium level of speed. Based on Foucault et al. (2003), Liu (2009)

and Foucault et al. (2016) investigate a continuous choice of speed based on the monitoring

intensity of traders.8 However, traders decide on the speed level simultaneously with other

6As for the SEC’s approval of the IEX, see Hu (2018). For the recent proposals regarding the increasing price

of direct data feed charged by exchange platforms, see https://www.wsj.com/articles/nyse-nasdaq-take-it-

on-the-chin-in-washington-1539941404.
7Aı̈t-Sahalia and Saglam (2013), Hoffmann (2014), Foucault et al. (2016) construct models with HFTs to

address the effect of high-frequency market making. See Conrad et al. (2015) for the empirical study of high-

frequency quoting.
8Foucault et al. (2013) consider the optimal choice of the monitoring intensity by high-frequency snipers

and market makers. It involves the exogenous cost but is not strategic. Both snipers and market makers
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types of players (e.g., market makers), which requires them to focus on the exogenous cost

of speed investment. Our model differs from theirs since the speed decision is continuous

and bears an endogenous cost due to the strategic motive of HFTs. Our results are unique

since these two modifications empower us to analyze how speed choice is affected by speed

bumps.

As traders get faster, questions arise regarding the speed and frequency of executions

by a trading platform. By altering the trading frequency of the Kyle-type model, Du and

Zhu (2017) show that a low-frequency platform works better to reallocate assets, though

it limits the ability to react to new information promptly. Pagnotta and Philippon (2018)

also consider platforms’ decisions regarding execution frequency and fees to attract speed-

sensitive traders. Menkveld and Zoican (2017) also explore the effect of latency on HFTs’

strategy and spread, citing risk aversion as a key to generating the result.9 In their analyses,

which pays little attention to the speed choice of HFTs, the frequency of transactions is

determined at a market level and applies to all investors.

Our model shares the same interests as the studies on the impact of slow market struc-

tures, such as frequent batch auctions (Budish et al., 2015; Haas and Zoican, 2016) and speed

bumps (Baldauf and Mollner, 2017; Brolley and Cimon, 2017; Aldrich and Friedman, 2018),

on HFTs’ behavior and adverse selection for market makers. However, they do not con-

sider a continuous optimal speed decision by HFTs with a delay-sensitive endogenous cost.

Thus, they conclude that these mechanisms mitigate adverse selection for market makers,

an assertion that will be overturned in our model.10

The scope of the literature extends to other empirical findings regarding the HFT and the

effect of bumps.11 Hu (2018) analyzes the SEC approval of the IEX as a national securities

obtain a positive profit from trading due to heterogeneous private values of an asset, generating strategic

complementarity in an arms race.
9Menkveld and Zoican (2017) obtain a hump-shaped equilibrium spread against a delay. This stems from

the switch from the pure-strategy to mixed-strategy equilibrium, and it depends on the risk aversion parame-

ter.
10Moreover, these models do not study the coexistence of slow and fast markets, which is analyzed in

Appendix A.2. In independent work, Brolley and Cimon (2017) explore this coexistence and find a result

consistent with ours, although it stems from a completely different mechanism.
11Hendershott and Moulton (2011) analyze the impact of the hybrid market at the NYSE and show that

the faster market structure increases quoted and effective spreads and adverse selection cost. Riordan and

Storkenmaier (2012) focus on the system upgrade in the Deutsche Boerse, Frino et al. (2014), Boehmer et al.
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exchange, making traders route their orders under the “Order Protection Rule,” and finds

a net improvement in market quality measured by the spreads. Shkilko and Sokolov (2016)

exploit interruptions of messaging via microwave communication caused by precipitation

(i.e., rain or snow) to find a reduction in quoted spreads.12 Chen et al. (2017) investigate

the effect of a bump in the TMX Alpha, reporting an increase in quoted spreads. In our

model, we can reconcile these results because, depending on the relative significance of the

exogenous cost and the level of expected delay, speed bumps will affect a spread negatively,

positively, or not at all.

2 The Benchmark Model

This section proposes a simple benchmark model to separate the main mechanism. Con-

sider a one-shot exchange of an asset, in which a short-lived HFT tries to snipe stale limit

orders. The asset has a stochastic liquidation value v = ±σ with equal probability. v is

publicly announced at a stochastic time T, which occurs as a Poisson arrival with intensity

γ. With the public announcement, the asset is liquidated. It is traded during t < T due to

liquidity needs or the arrival of private information, as in Glosten and Milgrom (1985) and

Budish et al. (2015). Following the convention of market microstructure, we assume that

each trader can hold only a unit position.

2.1 Traders

There is a continuum of competitive slow, uninformed market makers with a unit mass.

At the beginning of the trading game (t = 0), all market makers submit a single-unit limit

order with a half spread s to commit to trade at this price. The order will disappear from the

limit order book if there is a taker or if the market maker cancels it based on public news.

To focus on the short-horizon behavior, we assume that market makers do not return to the

(2015), and Brogaard et al. (2015) study the colocation as an example of latency reduction, and Hasbrouck

and Saar (2013) construct a measure of low-latency in the NASDAQ to find subsequent shrinkages in spreads.

On the other hand, Ye et al. (2013) analyze the importance of the tick-size constraint and report that latency

declines at the NASDAQ did not significantly alter spreads (except for the smallest stocks).
12Although the interruption by precipitation may have a similar effect to a speed bump, they mentioned

that this phenomenon is not paid much attention by financial institutions, while traders anticipate a speed

bump and take it into their decision making.
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market once they exit. Cancellation is immediate and incurs no cost.

There is one (N = 1) risk-neutral high-frequency trader (HFT). Before t = 0, the HFT

invests in a technology that provides the speed φ.13 Equipped with the speed device with

φ, she can observe private news regarding v and react to it with a Poisson probability with

intensity φ. We denote TH as the arrival time of this Poisson news. Upon the arrival of the

news, the HFT immediately submits market orders to “snipe” stale limit orders provided

by the continuum of market makers.14,15

In addition, there is a continuum of liquidity traders who are exposed to a liquidity

shock. The shock exogenously makes them submit buy or sell market orders with equal

probability. We can think of them as noise traders, and trading against them conveys no

information to market makers. Let TL be the timing of the Poisson shock which arrives with

intensity β(≥ γ).

Finally, as in Haas and Zoican (2016) and Brolley and Cimon (2017), assume that trad-

ing information, including traders’ identity, becomes public immediately after an order is

executed, i.e., the market is perfectly transparent.

2.2 Market Structure

A continuous market imposes a random speed bump on incoming orders from the HFT.

Specifically, an order submitted to the market at date t arrives at t + δ, where δ is a ran-

dom delay. Orders from liquidity traders and cancellation requests from market makers are

executed promptly.16 Thus, during τ ∈ (t, t + δ), outstanding limit orders can be illusory

13In the benchmark model with N = 1, imposing a sunk cost on the speed investment does not change our

result. In the extension with N ≥ 2, we need a positive and convex cost to hamper the strategic complemen-

tarity and to derive an equilibrium.
14If we give an index i ∈ [0, 1] to each market maker, the HFT submits marketable limit orders to obtain

sniping profit σ− si from each i. Since all the market makers quote a competitive homogeneous spread, the

HFT’s aggregate gain is
∫ 1

0 (σ− s)di = σ− s.
15We can show that the HFT does not intentionally delay the timing of the order submission: if she gets

information at t, she immediately sends the order at t. Putting a time lag between obtaining the information

and submitting the order can reduce a spread and increase sniping profit. However, without a commitment

device, this cannot be an equilibrium since it is always optimal for the HFT at the information arrival time TH

to snipe immediately given the lag she announces at t = 0, i.e., there is a time inconsistency.
16For simplicity, we assume that there are no other sources for a latency, while the primitive parameters,

such as β, can be seen as the potential latency that characterizes the speed of each type of trader.
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for the HFT if liquidity traders trade against them or if market makers cancel due to public

news.

For notational simplicity, we assume that δ follows an exponential distribution with a

parameter b, and the expected length of a delay is denoted by λ ≡ E[δ] = b−1.17

Alternative Market Structures

As an extension, we analyze a situation with multiple HFTs, N ≥ 2, in Section 3, in which

each HFT serves not only as a sniper but also as a high-frequency market maker. This

setting sheds light on a strategic property of an “arms race.” Appendix A.1 considers a case

where market makers can continuously update (cancel and resubmit) their limit orders. The

coexistence of slow and fast markets is analyzed in Appendix A.2. This shows that a bump

triggers a shift of adverse selection from slow markets with a bump to fast markets with no

bumps, consistent with the empirical result by Chen et al. (2017).

2.3 Equilibrium

We conceptualize our model as a sequential game with two stages, as depicted in Figure I.

In the first stage, the HFT decides the level of φ.18 Given this, each market maker submits

a competitive limit order, anticipating a confrontation with the informed HFT and liquidity

traders. In the trading stage, the HFT looks for an opportunity to snipe.

The equilibrium concept is a subgame perfect equilibrium, and the HFT chooses the

optimal level of speed φ in light of the optimal reaction of market makers. That is, the HFT

knows the price impact of her speed choice, as the monopolist in Kyle (1985) knows the price

impact of her trading behavior. In contrast to Kyle (1985), however, the trading stage in

t ∈ (0, T) is competitive, and the HFT behaves as if her trading strategy does not have a

price impact. This is because she splits her orders and sends them to an infinitely large

number of market makers given the outstanding limit orders. This follows the literature

17The randomness of δ does not significantly affect our result, while it makes the solution simpler. The case

with a deterministic δ is available on request.
18Of course, the setting of the speed decision used in our model does not comprehensively reflect real-world

conditions. As Dugast et al. (2014) suggest, some components of speed choice may occur simultaneously with

market makers’ behavior. However, we believe that the ex-ante strategic speed decision is still significant

because HFTs would not invest in speed ex-ante if they did not exploit it in an ex-post trading game.
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Figure I: Timeline

and captures the real-world behavior of HTFs, who send and cancel a massive number of

small orders within a very short time frame.

2.3.1 Optimal Behavior of Market Makers

In a perfect competition, a limit order sent by a market maker yields zero expected profit,

as in Glosten and Milgrom (1985). Without a loss of generality, let us consider how an ask

price s is determined when v = σ.19

Given that a market order arrives at date t, it is possible that the taker is information

or liquidity driven. As a result, the spread is set so that s = E[v|buy order at t], where the

expectation is over δ and the timing of the trade. The key effect of a bump is to reduce the

probability of being picked off by the HFT or, put differently, to increase the probability that

market makers observe public news to cancel their limit orders.

Suppose that a trade takes place at date t. If t < δ, there is no fear of facing an information-

driven HFT because of the speed bump. Put differently, the fastest possible arrival of the

HFT occurs at δ. During this “safe interval,” liquidity traders arrive before the public news

with a density βe−(β+γ)t. Otherwise, market makers can cancel their orders with density

γe−(β+γ)t at period t.

If a trade occurs at t ≥ δ, on the other hand, it bears an adverse selection cost: the HFT

buys an asset only if the limit order is mispriced given the true information. The HFT gets

to trade if she becomes informed at t− δ, and there are no liquidity shocks or public news

events during (t− δ, t). In this case, a market maker obtains s− σ. Market makers can also

19Results for the opposite case can be given by a symmetric argument.
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trade with liquidity traders if there is a liquidity shock at t, and the HFT becomes informed

after t− δ. In this case, the trading profit is s− E[v] = s. Since δ is stochastic, the expected

return for a market maker is

V = Eδ

[∫ δ

0
sβe−(β+γ)tdt +

∫ ∞

δ
(βs + φ(s− σ))e−ψ(t−δ)e−(β+γ)δdt

]
, (1)

where the expectation relates to δ, and ψ ≡ φ + β + γ. The first integral in (1) shows the

trading profit in t < δ, while the second describes the case with t ≥ δ.

This formulation is the result of the following probabilities: given δ,

Pr(HFT arrives at t) = φe−φ(t−δ)e−(β+γ)t,

Pr(Liq. traders arrive at t) = βe−φ(t−δ)e−(β+γ)t,

Pr(cancellation at t) = γe−φ(t−δ)e−(β+γ)t,

which lead to the second term in (1). It is then possible to get the equilibrium spread from

the break-even condition:

Proposition 1. The equilibrium (half) spread is given by

s =
φEδ[e−(β+γ)δ]

(φ + β)Eδ[e−(β+γ)δ] + βψ
β+γ (1− Eδ[e−(β+γ)δ])

=

φ
1+λψ

φ
1+λψ + β

σ. (2)

A few remarks on s are in order. First, a direct effect of the speed bump appears in the

form of the discount on the arrival rate of the HFT, which is given by (1 + λψ)−1. This term

mitigates adverse selection risk by generating a safe interval.

If φ is fixed, a lower λ induces a higher spread since the expected delay becomes shorter.

Also, an infinitely small expected delay (λ→ 0) makes s converge to the traditional equilib-

rium spread of Glosten and Milgrom (1985). Therefore, as Budish et al. (2015) and Baldauf

and Mollner (2017) point out, the direct effect of a bump mitigates the adverse selection cost

for market makers.

This argument is built on the assumption that φ is fixed, i.e., the HFT’s speed decision

is not influenced by the bump. When the speed choice by the HFT is considered, the speed

bump affects s via the fluctuation of the optimal speed as well. The existing models argue

that the incentive to be faster diminishes as the bump gets longer, i.e., a higher λ reduces
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s not only by the direct effect but also by making φ lower, while our model proposes the

opposite effect.

The following properties of the spread are useful to understand the mechanism. First,

note that the price impact of the speed is positive:

∂s
∂φ

> 0.

We call this derivative the “sensitivity” of a spread (price) to a speed-up by the HFT. It turns

out that this represents the slope of the endogenous cost of being faster. At the same time,

we have the following:

Lemma 1. The sensitivity of the price to the speed is decreasing in λ, i.e.,

∂

∂λ

(
∂s
∂φ

)
< 0.

Therefore, the longer the expected delay, the less sensitive the spread becomes. A market

with a higher λ is protected by a longer (expected) safe interval, and market makers behave

as if the share (arrival rate) of the HFT is small. Hence, market makers care less about the

speed investment by the HFT, making their pricing behavior less sensitive to φ.

2.3.2 Profit of the HFT

When the HFT becomes informed and submits market orders at t, they will be executed at

t + δ if (i) there is no liquidity shock during (t, t + δ) and (ii) no public news arrives in the

same interval. This happens with

πt(φ, δ) ≡ Pr(TH = t, min{T, TL} > t + δ) = φe−ψte−(β+γ)δ. (3)

Thus, if the random delay is δ, the profit from sniping at t is πt(φ, δ)(σ− s).

The first coefficient in (3) represents the probability that the HFT obtains the information

at t. The sniping probability involves an additional exponential coefficient, e−(β+γ)δ, which

shows the disadvantage of the HFT that stems from a speed bump, i.e., front-running by

liquidity traders or cancellation by market makers due to the δ-delay. Therefore, a longer

delay directly reduces the expected profit of the HFT in the second stage.
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The objective function of the HFT in the first stage takes a simple form:

W(φ) ≡ Eδ

[∫ ∞

0
πt(φ, δ)(σ− s)dt

]
=

φ

ψ

1
1 + (β + γ)λ

(σ− s). (4)

Note that the HFT always submits unit orders since she exits the market once her orders are

executed, i.e., she is a short-term investor.20

2.3.3 Optimal Speed

We move on to the speed choice by the HFT in the first stage. To obtain an interior solution,

we make the expected length of the delay relatively short:

λ <
1√

β(β + γ)
. (5)

The intuition behind this condition will be provided after offering our main propositions.

Under (5), the optimization problem of the HFT is

max
φ

W(φ) ≡ Eδ

[∫ ∞

0
πt(φ, δ)(σ− s)dt

]
, (6)

s.t. s =
φ

1+λψ

φ
1+λψ + β

σ.

This indicates that the HFT decides φ knowing the price impact of her speed decision, i.e.,

she is strategic. In this case, being faster pushes up the price charged by market makers

and saps her sniping profit. For this reason, we can think of the equilibrium spread as an

endogenous cost of speed. Importantly, Lemma 1 suggests that the slope of this endogenous

cost is affected by λ, and, in turn, affects the marginal cost of being faster for the HFT.

To analyze how λ alters the optimal decision, consider a marginal gain of being faster:

dW
dφ

= Eδ

[∫ ∞

0

{
(σ− s(φ))

dπt(φ, δ)

dφ
+ πt(φ, δ)

d
dφ

(σ− s(φ))
}

dt
]

. (7)

= (σ− s(φ))Eδ

[∫ ∞

0

dπt(φ, δ)

dφ
dt
]
(1− ε(φ)),

20See Appendix A.1 for a more general setting with continuous updating by market makers and time-

dependent st.
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where

ε ≡ − d log(σ− s(φ))
d log Eδ

[∫ ∞
0 πt(φ, δ)dt

] > 0.

ε is the sensitivity of the sniping profit (σ− s) to a change in the expected sniping probability

of the HFT (Eδ

[∫ ∞
0 πt(φ, δ)dt

]
). We call this the elasticity, and Appendix B.1 provides an

explicit formula.

Note that obtaining a higher φ affects W through two competing channels and exhibits

a price-liquidity tradeoff: it increases the sniping probability (the first term in [7]), while

reducing the sniping profit via the adverse price movement (the second term in [7]).

When the equilibrium spread is more sensitive to φ than the sniping probability (i.e.,

ε > 1), being faster harms the profit of the HFT, and incentive to increase φ dwindles. On

the other hand, if the HFT knows that the price impact of her speed choice is small, it is

more likely that an improvement in sniping probability (dπ
dφ ) dominates a decline in profit

due to the wider spread (d(σ−s)
dφ ), luring her to be faster. In other words, for the strategic

HFT, the marginal cost captured by the sensitivity of the spread matters considerably.

The following results guarantees the concavity of the problem (see Appendix B.1 for

proofs):

Lemma 2. The elasticity is increasing in the speed: dε(φ)/dφ > 0.

When the HFT is fast, market makers estimate that the economy is inhabited by a rela-

tively large measure of the HFT in terms of the arrival rate. Therefore, a marginal increase

in φ reduces market makers’ expected profit, and they charge a wide spread to compen-

sate for the expected loss. That is, as the HFT becomes faster, market makers grow more

concerned about facing the HFT, and their pricing behavior is more sensitive to changes in

speed. Thus, as φ increases, it is more likely that the steeper endogenous marginal cost of

being faster will outweigh the higher marginal benefit from a higher π, making the objective

function (6) concave.21

As a result, the optimal speed φ∗ is derived by solving for the FOC.

21The condition in (5) is required to make Lemma 2 hold. If λ is sufficiently large, market makers become

too insensitive to make dε
dφ > 0. Thus, the HFT can be infinitely fast, and we need an exogenous cost to make

the problem well defined.
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Proposition 2. (i) The optimal speed is given by

φ∗ =

√
β + γ(1 + λ(β + γ))

1− λ
√

β(β + γ)
. (8)

(ii) φ∗ is increasing in λ.

Proof. See Appendix B.1. �

In contrast to the traditional models, Proposition 2 demonstrates that, if the speed choice

is strategic, a speed bump increases the equilibrium speed of the HFT. This modification of

the speed decision is natural given that several high-frequency financial institutions control

significant shares, as discussed in Section 1 and shown in Table I.

When the HFT knows how her speed investment affects the pricing behavior of market

makers, an equilibrium spread generates an endogenous cost of being faster. This not only

guarantees a bounded solution even without an exogenous cost of speed (Lemma 2), but

also overturns the traditional result regarding speed bumps (Proposition 2).

The key mechanism is the negative impact of a speed bump on the sensitivity of the price

in Lemma 1. Since a bump intends to slow down the HFT and protect market makers, the

spread becomes insensitive to a change in the speed. That is, an intentional delay endoge-

nously reduces the marginal cost of being faster. Hence, a speed bump does not prevent a

speed race but promotes it, as Proposition 2 attests.

This surprising finding highlights the main difference of our results from the literature,

such as Budish et al. (2015), Haas and Zoican (2016), and Baldauf and Mollner (2017). As in

their models, if we assume that the HFT does not care about the effect of her speed choice on

the spread, the second effect in (7) disappears. In this case, some exogenous costs of speed

are required to make φ∗ bounded, and the effect of λ on φ∗ becomes reversed. We compare

our model to the traditional ones in more detail in Subsection 3.4.

2.4 Effect on Adverse Selection

We are interested in how a speed bump affects adverse selection cost for market makers. It

is straightforward that there are two competing effects. First, as the literature suggests, a

speed bump reduces adverse selection cost because it dampens the probability for market

makers of confronting the HFT. However, our strategic model adds an opposing channel:
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a speed bump promotes speed investment by the HFT since it endogenously reduces the

marginal cost of being faster. In the following, we take the equilibrium half spread s as a

measure of adverse selection and investigate its equilibrium behavior.

Proposition 3. The equilibrium spread is independent of the expected delay, i.e., ds/dλ = 0.

Proof. See Appendix B.2. �

This result shows that a speed bump cannot mitigate (or worsen) adverse selection for

market makers.

With φ fixed, a speed bump reduces the profit of the HFT since the first-δ periods be-

come safe intervals for market makers and the HFT cannot snipe. To compensate for this

disadvantage, the strategic HFT gets faster. Anticipating the price impact of her speed in-

vestment, she chooses the level of φ that eliminates the cost from the speed bump, thereby

muting its effect. As a result, the two competing consequences of a speed bump cancel

each other out. Put differently, the speed-up due to a longer delay is an indirect effect of a

change in the price sensitivity, ds
dφ . Since the reduction of a spread by λ is a direct effect, the

speed-up cannot predominate.

In the following sections, however, we show that this finding regarding adverse selection

is specific to the benchmark setting and significantly changes if we consider more general

market structures.

3 Multiple HFTs and High-Frequency Market Making

In the real world, HFTs serve not only as takers (snipers) but also as liquidity providers. We

modify the benchmark model to capture this fact.

Assume that there are two HFTs (i = 1, 2), both of whom provide limit orders at t = 0

as market makers at a competitive price. At a random date, Ti ∼ exp(φi), HFT i obtains

private news about v. When the news arrives, it is optimal for HFT i to immediately send

market orders to snipe the stale limit orders of her opponent (HFT j) and to simultaneously

cancel her limit orders.

The behavior of liquidity traders is the same as in the benchmark, but we ignore public

news at T ∼ exp(γ), since it only adds complexity. The other structures of the game stay

the same as in the benchmark. Note that the results with N = 2 can be easily extended to
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N ≥ 3 with an additional parameter N that measures the (inverse of) market power. For

technical reasons, assume that β ≥ 1 and focus on the symmetric equilibrium.

3.1 Optimal Behavior of HFTs

Consider HFT j as a high-frequency market maker (HFMM). Her behavior is the same as

that of ordinary market makers in the benchmark model except that she can cancel her limit

orders at Tj ∼ exp(φj). Thus, the break-even condition provides the following equilibrium

spread:

sj =
φi

φi + β(1 + λ(φi + φj + β))
σ.

This spread has the same structure as s in (2): it reflects an expected value of v conditional

on the trade. Note that the symmetric equilibrium makes the spreads set by both HFTs the

same; s = s1 = s2.

We turn to the optimal speed decision of HFT i as a sniper. Since the competition drives

her total profit from market making to zero, her gains come only from the sniping profit.

Thus, the optimization problem is analogous to (4):

max
φi

Wi(φ) =
1

1 + λ(β + φj)

φi

φi + φj + β
(σ− sj),

s.t., sj =
φi

φi + β(1 + λ(φi + φj + β))
.

Since this is exactly the same as the benchmark case if we substitute φj for γ, the best re-

sponse function of HFT i is a modified (8):

BRi(φj) =

√
β + φj[1 + λ(β + φj)]

1− λ
√

β(β + φj)
, (9)

as long as 1 > λ
√

β(β + φj). Otherwise, φi = ∞ is the best response. In this section, we

focus on bounded responses, while Subsection 3.2 analyzes all possible symmetric equilib-

ria.22 The following property of the best response function helps explain the mechanism:

Proposition 4. The best response function exhibits strategic complementarity, i.e.,
dBRi(φj)

dφj
> 0.

22Technically, we can avoid the unbounded equilibrium if we introduce a positive exogenous sunk cost for

the speed.
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The intuition behind this proposition should be clear if we analyze the marginal gain of

being faster for HFT i:

wi ≡
∂Wi

∂φi
= (σ− sj)

∂πi

∂φi
+ πi

∂(σ− sj)

∂φi
, (10)

where

πi ≡
φi

[1 + λ(β + φj)]ψ

represents her sniping probability.

The first term is the marginal improvement in the sniping probability, and the second

stands for a decline in the profit. These terms can be seen as the marginal benefit and cost

of being faster. The structure of the marginal gain of increasing φi is the same as in the

benchmark case, while it depends on the speed of the competitor.

Furthermore, we need a cross derivative to obtain the reaction of BRi.

∂wi

∂φj
=

[
(σ− sj)

∂2πi

∂φj∂φi
+

∂πi

∂φi

∂(σ− sj)

∂φj

]
+

⊕︷                                         ︸︸                                         ︷[
∂πi

∂φj

∂(σ− sj)

∂φi
+ πi

∂2(σ− sj)

∂φj∂φi

]
. (11)

When the opponent (HFT j) increases her speed, it affects both the marginal benefit and

cost of being faster for HFT i. The first component of (11) is a change in the marginal benefit

that stems from a marginal improvement in πi. A faster opponent (i) increases or decreases

the marginal improvement in the sniping probability and (ii) raises the sniping profit, mak-

ing it more worthwhile to have a higher πi. These are the first and second terms in the first

brackets in (11). At the same time, a faster opponent reduces the (endogenous) marginal

cost of being faster for HFT i. Intuitively, (iii) since a faster opponent makes HFT i less

likely to snipe, she does not need to care much about the adverse price movement of being

faster. Moreover, (iv) a faster opponent becomes more insensitive to HFT i’s speed-up due

to the same logic that states that a higher λ makes s less sensitive to φ in the benchmark

case. As a result, the second term is positive, as is the total effect of φj on wi, i.e., a faster

opponent renders speeding up more profitable for HFT i.

Moreover, “tit for tat” due to complementarity can be strong enough when the opponent

is sufficiently fast.
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Lemma 3. There is a unique φj = φ0 such that

d2BRi(φj)

dφ2
j

> 0⇔ φj > φ0. (12)

Proof. See Appendix B.3. �

If φj is sufficiently high, the negative effect of φi on the expected profit becomes minimal.

This is because a very fast opponent makes it extremely difficult for HFT i to snipe. Thus,

she barely cares about the negative impact of φi on the price. In addition, a fast opponent

as a market maker tends to be highly insensitive to a change in φi because she estimates

that being sniped by HFT i is not likely to happen. Both of these effects strongly prompt an

incentive of HFT i to be faster, making the best response function convex.

3.2 Equilibrium Speed

To see if (9) has a symmetric solution, we first observe that BRi(0) > 0, i.e., facing a zero-

speed opponent, HFT i still maintains a positive speed. This is because φi > 0 yields a

positive profit, while φi = 0 keeps it at zero. Together with (12), this implies that multiple

equilibria can arise. We focus on the symmetric equilibria.

Proposition 5. (i) There is a unique λ = λ0. If λ > λ0, no bounded solution exists. If λ ≤ λ0,

there are two bounded solutions to BR(φ) = φ. The low-φ solution is stable and the high-φ solution

is unstable.

(ii) In the stable equilibrium, φ∗ ≡ φi = φj is increasing in λ.

Proof. See Appendix B.3. �

Note that a higher λ has the same implication as a higher φj for the sensitivity of s to

φi and for the improvement in the sniping probability πi. Thus, due to the same logic as

in Lemma 3, a sufficiently high λ makes the complementarity strong enough to eliminate a

bounded solution, i.e., φ = ∞ is always optimal. On the other hand, when λ is small, we

obtain bounded symmetric equilibria.

Following the convention (Hendershott and Mendelson, 2000; Zhu, 2014), we use stabil-

ity as an equilibrium selection criterion. The unstable equilibrium is not robust to a small
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Figure II: Best Response Functions

perturbation in a parameter value, whereas the stable one does not diverge even if a param-

eter changes slightly. Thus, our focus is on the small-φ solution.

Figure II provides the best response functions for different values of λ. In multiple equi-

libria, a small-φ solution is stable, while a higher φ makes “tit for tat” strong and the solution

can explode.

As Figure II indicates, a longer delay has the same effect on the optimal speed as in the

benchmark, i.e., it increases the marginal benefit of being faster. Thus, the best response

function shifts upward, leading to a higher speed in the stable equilibrium.

3.3 Effect of Speed Bumps on the Spread

The effect of a bump on the spread and adverse selection can be derived analytically. Due

to “fast market making,” adverse selection risk is mitigated by fast market makers, and it

helps λ protect them. However, in the symmetric equilibrium, the increase in market mak-

ers’ speed occurs identically for snipers. Then, the above-mentioned effect of fast market

making is offset by the increase in the snipers’ speed.

Since the strategic complementarity is sufficiently strong, this arms race outweighs the

direct protection of the speed bump, expanding the spread.

Proposition 6. A longer speed bump widens the spread; ds
dλ > 0.

Proof. See Appendix B.4. �
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The introduction of a speed bump or a longer expected delay can backfire not only in

terms of speed but also of adverse selection. In the benchmark model, we have ds
dλ = 0

because the speed-up by the single HFT is an indirect consequence of the speed bump and

cannot offset the direct protection of market makers.

By contrast, multiple HFTs generate a positive externality through strategic complemen-

tarity (Proposition 4). In this situation, an increase in λ indirectly affects the best response

functions of both HFTs, shifting them upward, as shown in Figure II. This triggers an arms

race with positive externality, amplifying the first indirect effect. As a result, the speed-up

in the symmetric equilibrium dominates the direct protection of market makers, leading to

more severe adverse selection.

3.4 Comparison with Traditional Models with an Exogenous Cost

The results in the previous subsection run counter to traditional models with an exogenous

cost of speeding up. To illustrate this, consider a model with non-strategic HFTs; Instead

of an endogenous cost, we introduce an exogenous sunk cost of being faster denoted by

C(φi) =
c
2 φ2

i , as in Foucault et al. (2016). To make the comparison clearer, we call our model

in Subsection 3.1 the strategic model.

If the strategic motive is absent, the FOC in (10) and cross derivative in (11) are modified

as follows:

wi ≡
∂Wi

∂φi
= (σ− sj)

∂πi

∂φi
− cφi,

∂wi

∂φj
=(σ− sj)

∂2πi

∂φj∂φi
+

∂πi

∂φi

∂(σ− sj)

∂φj
. (13)

The second term of (10) that represents an endogenous marginal cost is replaced by the

exogenous marginal cost, cφi, and the effect of the opponent’s speed via the strategic motive,

denoted by the second set of brackets in (11), disappears from (13).

We focus on a symmetric equilibrium and obtain the following results.

Proposition 7. (i) Around the symmetric equilibrium, the best response function exhibits strategic

substitution;
dBRi(φj)

dφj
< 0.

(ii) The equilibrium speed and spread are decreasing in λ.

Proof. See Appendix B.5. �
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The third column (panels A3, B3, and C3) of Figure III shows these results. As we have

established, if HFTs are strategic, HFT j’s speed-up improves wi through the second brackets

in (11), while this effect is absent in the traditional models.

To understand this intuition, note that the profit function of an HF sniper is roughly

given by

Vi = max
φi

πi(φi, φj, λ)(σ− s)− C(φi),

where πi is the sniping probability of HFT i. In this formulation, the interaction between

HFT i and j occurs only through πi, i.e., probability of successful sniping.

A marginally faster opponent in a traditional model affects HFT-i’s decision by making

sniping more difficult, i.e., φj changes Vi only by reducing πi. Since the exogenous cost

is sunk, HFT i must pay it anyway. By contrast, her speed investment pays out only if

her sniping attempt is fulfilled. Therefore, if HFT i thinks she is less likely to snipe due to

a faster opponent (a lower πi), the exogenous cost becomes more salient (C/πi increases),

hampering her speed investment. This logic applies to a speed bump as well: a bump makes

sniping less likely, leaving HFTs reluctant to pay the sunk cost. This is why traditional

models conclude that a speed bump is effective to slow HFTs down and mitigate adverse

selection, which is replicated by Proposition 7.

Once HFTs become aware of the price impact of their speed choice, they perceive the

price as s = s(φi, φj, λ), generating a new channel through which φj affects Vi. In the pre-

vious subsection, we showed that this modification overturns the result of the benchmark.

This is because the pricing behavior of market makers becomes insensitive to an increase

in φi (the endogenous marginal cost declines) when the opponent as a market maker be-

comes faster or a bump is expected to be longer. In our strategic model, this endogenous

cost channel works against the traditional exogenous cost.

3.5 Strategic Complementarity or Substitution

As Proposition 7 and the following discussion suggest, an exogenous sunk cost tends to

make an arms race exhibit strategic substitution, while an endogenous cost in our model

promotes complementarity (Proposition 4). These results imply that introducing an exoge-

nous sunk cost in our strategic model allows us to explain both complementarity and sub-

stitution in an arms race, as well as the positive and negative reaction of the spread to a
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Figure III: Effect of Exogenous Cost

Note: The first row plots the best response functions with different (cλ), the second and third rows plot the
optimal speed and the equilibrium spread, respectively, against the expected length of a speed bump with
different values of c. In each row, c = 0 corresponds to the strategic model with no exogenous costs. The
figures in the third column replicate the traditional results.

bump, by changing the parameter values.

Consider a model that is the same as in Subsection 3.1, except that HFT i solves

max
φi

Wi(φ) =
1

1 + λ(β + φj)

φi

ψ
(σ− sj)− C(φi),

s.t., sj =
φi

φi + β(1 + λ(φi + φj + β))
,

where C(φ) = c
2 φ2 is the exogenous sunk cost of speed.

The best response functions, equilibrium speed, and spread are provided in Figure III.
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Figure IV: Summary

The strategic model in Subsection 3.1 corresponds to c = 0. As expected, a small exogenous

cost (panels A1 and A2 with c = 0.002 and 0.01) offers strategic complementarity and an

increasing φ∗ against λ (panel B1). This leads to the increasing s against λ (panel C1).

As long as c > 0, φ∗ becomes flatter as λ rises and can be hump shaped (panels B1 and

B2). This is because a higher λ makes C more salient. That is, a longer delay makes sniping

more difficult, and HFTs become more reluctant to pay the sunk cost. In this situation, an

arms race exhibits both complementarity and substitution (Panel A2 with c = 0.04), i.e.,

the BR curves become hump shaped. When λ is small enough, the model is close to our

strategic model with complementarity, while a large λ makes it similar to the traditional

model with substitution. As a result, the direct protection of market makers by the bump

dominates the speed increase in the high-λ region, and s slopes downward, as shown in

Panels C1 with c = 0.002 and C2.

Finally, if the exogenous cost is sufficiently large, the economy reverts to the tradi-

tional world with no strategic speed choice (panels A3, B3, and C3). The competition ex-

hibits global substitution, and the equilibrium speed and the spread are downward sloping

against λ, i.e., a speed bump mitigates adverse selection.

Overall, we can think of the strategic model with complementarity and the traditional

models with substitution as two extremes. By changing the significance of the exogenous

cost, c, we can explain intermediate cases. Moreover, we have established that a speed

bump, λ, also works to adjust the relative significance of the exogenous cost because a

longer delay makes it more salient. This premise is summarized in Figure IV and has some

empirical implications.
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4 Empirical Implications and Policy Discussion

Our model provides some testable implications for the strategic nature of an arms race

among HFTs and for the effect of speed bumps on a spread and adverse selection for market

makers.

As Subsection 3.5 demonstrates, an arms race exhibits strategic complementarity or sub-

stitution depending on the exogenous cost of speed investment and the expected length of

a speed bump. As summarized in Figure IV, a long (resp. short) expected speed bump

or a significant (resp. slight) exogenous cost of speed creates strategic substitution (resp.

complementarity), and the introduction of a bump and a marginally longer delay would

effectively reduce (resp. widen) a spread.

In the real world, the speed cost for HFTs involves two factors. The first is a large sunk

cost to develop a high-speed communication technology or investigate the optimal location

of an information servers to exploit an arbitrage between segmented markets. For example,

it is well known that Spread Networks LLC invested about $300 million to reconstruct a

fiber-optic network between the Chicago and New York exchanges. The second cost can be

a relatively small subscription fee to access these technologies developed by communication

service companies or to colocate an information server to an exchange platform.23

Depending on the condition of the financial markets, our model suggests different impli-

cations. If HFTs take the first investment approach, the traditional model fits better: an arms

race involves strategic substitution and a bump is effective. In contrast, if the exogenous cost

is relatively small compared to the total profit, our strategic model is more appropriate, sug-

gesting the complementarity and detrimental effect of a bump. This comparison can also be

applied to the market power of a high-frequency financial institution because the endoge-

nous cost stems from the strategic motives of HFTs. In other words, when N is large, the

adverse price impact of increasing φi diminishes, leaving the model close to the traditional

one.

Also, we can vary the length of a speed bump or the distribution of a random delay

to test the implications of λ on a spread. If a bump is expected to be long, a marginally

longer delay can be effective, slowing HFTs down due to the substitution in the traditional

model. On the other hand, if a platform tries to avoid a delay cost by keeping the length

23For example, monthly payments to plug into NSYSE and NASDAQ amount to $10,000∼$22,000.
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of a bump minimal, the introduction of a bump can aggravate adverse selection since HFTs

become faster. Although we can compare the length of bumps in each platforms (i.e., bumps

in the ANEO and TMX are longer than those in the IEX or Chicago Stock Exchange), our

model shows that the level of λ also matters. Deriving the critical (c, λ) involves numerical

calculation in our model, and estimating it requires further data on the cost of the speed

technologies, speed levels, profit, and the market power of high-frequency financial institu-

tions.

4.1 Policy Implications

Recently, exchange platforms have experienced declines in their revenue from transaction

fees. Instead, they charge an increasingly high price to the fast access to their data, such as

direct data feed and colocation of data servers. Namely, one of the suppliers of the speed

technology, which we did not specify in the model, can be the exchange platforms.

The SEC is concerned about this skyrocketing price of fast data feed and issued a pro-

posal to block the exchanges to raise the fee in March 2018. Another HFT-related policy

that SEC adopted is the approval of the IEX with a speed bump as a National Securities

Exchange (NSE) in 2017. Due to the Reg. NMS and Order Protection Rule, this approval

effectively makes all orders being affected by the speed bump. In a nutshell, the SEC tries to

curb the price of speed technologies supplied by the exchange platforms, while they prompt

the introduction of a speed bump.

Importantly, our model suggests that the introduction of a delay does not necessarily

conflict with a provision of the expensive speed technologies by an exchange platform.

That is, a speed bump can increase HFTs’ demand for fast information access, allowing

an exchange platform to charge a higher price. Thus, aforementioned policies adopted by

the SEC can be self negating.

In this situation, we can analyze whether “the market will fix the market,” as Budish et

al. (2018) put forth. They argue that a platform does not have an incentive to introduce FBA,

as long as competing platforms can copy the innovation with a low cost. In our model, a

bump does not always mitigate adverse selection, while an exchange platform may have

an incentive to introduce a bump to obtain the higher demand for the speed technology.

More detailed analyses can be our future research topics, but aforementioned mechanism

can provide another explanation for why “the market cannot fix the market.”
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5 Conclusion

A speed bump, which seeks to mitigate adverse selection for market makers, can backfire.

When HFTs strategically choose their speed level by considering the impact of their speed

decision on market behavior, a bid-ask spread charged by market makers works not only

as a trading cost but also as an endogenous cost of speeding up, since it widens as HFTs

get faster. This endogenous cost tends to be insensitive to an increase in speed by HFTs

when a speed bump is expected to be longer. This is because market makers behave as if

the share of HFTs is small under a longer expected speed bump and do not care much about

a speed increase. Then, if a bump is introduced or the length of a delay becomes longer, the

marginal cost of speed diminishes, leading to a higher equilibrium speed of HFTs.

We also consider an arms race among multiple HFTs who serve both as snipers and as

market makers. When the significance of the exogenous speed cost is not high compared

to the endogenous cost, or when the expected length of a delay is relatively short, a speed

competition can show strategic complementarity. In this situation, a longer speed bump

triggers a positive externality among HFTs, leading to a very fast equilibrium speed. As a

result, the increase in HFTs’ trading speed dominates a direct reduction of an arrival rate

of HFTs by a speed bump. That is to say, a longer bump exacerbates adverse selection and

widens the equilibrium spread. The opposite holds in the case of substitution.

Thus, our model, which incorporates strategic speed choice and the endogenous cost

(i.e., the equilibrium spread), generates results that are opposite to the traditional models, in

which an arms race exhibits strategic substitution, the speed and adverse selection decrease

with the length of the delay, and a bump is effective. By adding a traditional exogenous cost

to our strategic model, we can derive a rich description of the characteristics of an arms race

among HFTs and can explain the somewhat ambiguous effects of speed bumps on spreads

and adverse selection.
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A.1 Continuous Updating by Market Makers
We modify the benchmark case by allowing each market maker to update (cancel and resubmit)
limit orders continuously before HFTs move. Other structures of the model is the same as the bench-
mark.24

Consider a market maker who updates her limit order by resubmitting competitive st. The com-
petition drives st = E[v|trade at t]. Since δ is stochastic,

st =
∫ ∞

0
be−bδE[v|trade at t,δ]dδ

=
∫ ∞

t
be−bδE[v|trade at t,δ]dδ +

∫ t

0
be−bδE[v|trade at t,δ]dδ (14)

= 0×
∫ ∞

t
be−bδdδ +

∫ t

0
be−bδ φ

φ + β
σdδ (15)

= (1− e−bt)
φ

φ + β
σ.

In (14), the first term represents the case that t is in the “safe interval,” i.e., 0 < t < δ. Conditional on
trade occurs, the market maker expects that E[v] = 0 because the trade must be against a liquidity
trader, and it does not convey any information. This is why the first term in (15) bears 0. The second
is the case that t is outside of the “safe interval,” leading the conditional expected return to be the
probability of the HFT arrival (times σ) in (15).

A speed bump has the same effect on the endogenous marginal cost as in the benchmark (the
proof is omitted as it is straightforward):

Proposition 8. (i) ∂st
∂b > 0, and (ii) ∂

∂b

(
∂st
∂φ

)
> 0.

Since b = λ−1 represents the inverse of the expected length, a longer delay (i) directly mitigates
adverse selection for market makers, but (ii) it makes the marginal cost (spread) less sensitive to
speed-up by the HFT.

We impose an exogenous sunk cost to make the model well-defined. The optimization problem
of the HFT regarding the speed is given by

max
φ

W(φ) = Eδ

[∫ ∞

0
φe−ψte−ηδ(σ− st+δ)dt

]
− c

2
φ2,

s.t., st = (1− e−bt)
φ

φ + β
σ.

The sniping profit from sending market orders at t is given by σ − st+δ since they possibly arrive
and executed at t + δ. Note that, given that the trade occur, there is no price uncertainty since st is
deterministic.

The behavior of the optimal speed and spread is hard to show analytically. However, the numer-
ical solutions in Figure V can be discussed by using the ingredients we have already analyzed. In
the single HFT economy, a speed bump positively affects the optimal speed φ∗ through (i) decline
in the marginal cost and (ii) increase in the sniping profit, while (iii) it reduces φ∗ by magnifying the
exogenous sunk cost. When λ is small, the execution risk is relatively small, leaving effect (iii) less
significant compared to (i) and (ii), while a longer delay in the high-λ region makes (iii) more salient.

24We can eliminate the possibility that an informed HFT splits her orders across the time because executions
in a part of the markets let other market makers know the arrival of the HFT and true information. This event
triggers the cancellation of outstanding limit orders. We also abstract away from the possibility of a mixed
strategy since each order from the HFT does not have price impact. As mentioned in Footnote 15, we can
show that the mixed strategy is not an equilibrium because waiting is not credible.
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Figure V: Effect of λ on φ∗ and st

Note: The panel A plots the optimal speed against λ with different values of c. The panels B and C plot the
dynamics of the spread, st with different values of λ. The panel B is the case with the increasing optimal speed,
dφ∗

dλ > 0, and the panel C is the decreasing optimal speed, dφ∗

dλ < 0.

As a result, φ∗ takes the hump-shaped curve as depicted by Panel A in Figure V. Given λ, a larger
cost slows HFT down as we can see from a parallel shift in the curves.

As (14) suggests, the spread is time dependent and increasing in t. This is because the market
makers expect that they are less likely to be in the safe interval as t increases. The effect of λ = b−1 is

dst

dλ
= − 1

λ2
∂st

∂b
+

dφ

dλ

∂st

∂φ

= − 1
λ2 te−bt φ

β + φ
+

dφ

dλ
(1− e−bt)

β

(φ + β)2 . (16)

First, a longer delay (higher λ) reduces the spread since market makers are directly protected by the
longer safe interval. This is represented by the first term in (16). However, as a higher λ may push φ

up or down, it increases or decreases the spread, as the second term in (16) suggests. When dφ
dλ > 0,

the second effect competes with the first effect: the safe interval gets longer, while the HFT becomes
faster. The result is provided by Panel B in Figure V.

Whether the first effect dominates the second effect depends on t. From (16), the first negative
effect is increasing in t ≤ b−1 and then starts decreasing. On the other hand, the second one is
monotonically increasing in t and concave. There is a unique t = τ, such that dst

dλ > 0 if and only if
t > τ, i.e., a longer speed bump increases the spread and worsens the adverse selection problem in
the long-run.

The intuition is straightforward. When the current period t is t > τ, the probability that t is in
the safe interval is relatively small. Then, market makers think that an increase in λ has only a small
effect to mitigate the adverse selection, while it increases the speed of the HFT.
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When dφ
dλ < 0, the result is given by Panel C in Figure V. Since a bump reduces the speed in

this case, the second effect helps the first effect reduce the spread and adverse selection cost. Once
again, whether or not a speed bump increases the equilibrium speed depends on the exogenous
cost, c, competing with the endogenous cost effect. Hence, the effect on the spread is governed by
the market structure c and the time frame t.

A.2 Coexistence of Fast and Slow Markets
In the real economy, the major market structure is still the continuous limit market with no speed
bumps. Thus, the introduction of a speed bump inevitably makes these market structures coexist.
However, analyses provided by the literature deal only with homogeneous markets. We extend our
model to relax this limitation.

A.2.1 Environment

Consider the benchmark economy in Section 2. q ∈ (0, 1) fraction of market makers are in the market
with a delay δ > 0, which is stochastic, and the rest of them are in the market with no delay, δ = 0.
We call the first market the slow market and the latter one the traditional fast market. Each market is
competitive. Market makers in the slow market submit limit orders with the (half) spread sλ, while
those who in the traditional fast market provide s0. As in the benchmark, λ is the expected length
of the delay. In contrast to the literature (Biais et al., 2015), we impose no restrictions on the venue
choice by the HFT. Transactions information in each market becomes public right after an order
execution, i.e., the markets are perfectly transparent.

A.2.2 Strategies of HFT

Consider a strategy of the HFT who becomes informed of v = σ at date t. There are two possi-
ble (pure) trading strategies for the HFT. First, if she submits orders into the fast market, they are
immediately executed, fulfilling 1 − q of her total buying attempts. This market activity is pub-
licly observable, allowing all market makers to realize that the transactions are information driven.25

Based on this premise, market makers in the slow market can cancel their limit orders in the interval
τ ∈ (t, t + δ) which is protected by the speed bump. We call this the “strategy one” and denote it by
A = 1.

Second, the HFT who becomes informed at t can immediately send market orders for q shares
into the slow market, anticipating the execution with the δ-delay. She refrains from sending orders
to the fast market at t and waits until the orders sent to the slow market are executed. By observing
the execution in the slow market, she sends orders to the traditional fast market at t + δ, which incur
no delay by the construction. In this case, all of her orders arrive at the markets at the same time,
(t + δ), and she can conceal her identity. Hence, none of the market makers can cancel their quotes.
This “wait-and-grasp-all” strategy is denoted as A = 2.26 Overall, taking A = 2 bears the execution
risk, though the return from it is larger than A = 1 if accomplished.

The mixed strategy is the probability distribution over the set of actions A ∈ A = {1, 2}, and
let θt ∈ [0, 1] be the probability that the HFT takes the action A = 2. For A ∈ A, let wA(t) be
the expected profit from taking A ∈ A when the information arrives at date t. Figures VI and VII
illustrate the timing of the executions when the HFT becomes informed at t.

First, A = 1 does not bear the execution risk because the HFT can immediately snipe limit orders
in the fast market. However, this behavior becomes public immediately, allowing market makers in

25This is because orders from liquidity traders will be fulfilled at the slow and the fast markets simultane-
ously.

26Note that making other lengths of strategic time lag is not optimal for the HFT, as any other intentional
delay than δ tells that the orders are not from liquidity traders but from the HFT.
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Figure VI: Strategy 1

Figure VII: Strategy 2

the slow market to cancel their orders. Thus, q fraction of quotes disappear, and the expected profit
is given by

w1(t) = (1− q)(σ− s0).

On the other hand, A = 2 can snipe all outstanding liquidity at the same time, while it bears the
execution risk that stems from the δ-delay. If there is a liquidity shock or the public news during
(t, t + δ), the HFT cannot exploit her information and speed. Given that the HFT gets informed at
date t, she obtains the profit with probability Pr(TL > δ, T > δ) = e−(β+γ)δ. Moreover, since the HFT
is a price taker regarding her trading behavior, her expected return is

w2(t) =
∫ ∞

0
be−(b+β+γ)δ [q(σ− sλ) + (1− q)(σ− s0)] dδ,

=
q(σ− sλ) + (1− q)(σ− s0)

1 + λ(β + γ)
.

Note that both of {wj(t)}j∈A are time independent due to the memoryless property of the exponen-
tial distribution. This implies that the optimal decision of A ∈ A is also time independent. No matter
when the HFT becomes informed, a timing of private news does not matter—only the delay can be
her concern.

A.2.3 Behavior of Market Makers

We take q an exogenous parameter in our model and assume that each market maker is randomly
assigned the structure of the market. Given an assigned market, each market maker earn zero profit
and does not have an incentive to move to another market with a different structure.

In the Fast Market

The market makers in the fast market suffer from adverse selection cost no matter what strategy the
HFT takes. In other words, They are not given any chances to cancel orders by observing market-
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based information before the HFT snipes them. The expected return is

V0 =Eδ

[
θ

(∫ δ

0
s0βe−(β+γ)tdt +

∫ ∞

δ
e−ψ(t−δ)−(β+γ)δ(βs0 + φ(s0 − σ))dt

)
(17)

+(1− θ)
∫ ∞

0
e−ψt(βs0 + φ(s0 − σ))dt

]
.

The first line is the case that the HFT takes A = 2. In this case, the fast market is under the pro-
tection of the speed bump even though the speed bump is not applied to the fast market.27 This is
because the HFT takes “wait-and-grasp-all” strategy, and she does not snipe the fast market until she
accomplishes her trading attempt in the slow market. The expected profit, in this case, is identical to
those in the benchmark with homogeneous markets. In the second line, the possibility of A = 1 is
characterized. In this case, the speed bump does not matter for the fast market, and the conditional
expected return is the same as a model with λ = 0.

In the Slow Market

In contrast to the fast market, the strategy of the HFT determines whether or not market makers in
the slow market are protected. If θ = 0, the slow market is perfectly protected by the speed bump:
they can cancel their limit orders to avoid the HFT for sure. On the other hand, if θ , 0, it is possible
that the HFT arrives at the slow market to trade.

The expected return is

Vλ =E
[

θ

(∫ δ

0
s0βe−(β+γ)tdt +

∫ ∞

δ
e−ψ(t−δ)−(β+γ)δ(βs0 + φ(s0 − σ))dt

)
(18)

+(1− θ)
∫ ∞

0
sβe−ψtdt

]
.

The intuitions behind the first line are the same as those in (17). As mentioned above, when the HFT
takes A = 1, there is no chance for the HFT to snipe in the slow market. On the other hand, liquidity
traders arrive at the slow market at t if TL = t, TH > t, and T > t, which gives the integrand in the
second line.

A.2.4 Equilibrium in the Trading Stage

Let Q ≡ (1− q)/q. We first solve for the equilibrium spread given θ:

Proposition 9. The equilibrium spread in fast and slow markets are given by

sj =


φ

φ+β+βψθ λ
1+λ(β+γ)(1−θ)

for j = 0,
φθ

β+φθ+λβ(β+γ)
(

1+ φθ
β+γ

) for j = λ.
(19)

Proof. Solving Vj = 0 yields the result. �

These formulae show the following:

27Liquidity traders arrive at t if (i) the HFT becomes informed after t or (ii) the HFT be-
comes informed before t and takes A = 2. Given that the quote remains alive at t−,
Pr(TH < t, ATH = 2|quote is alive at t−) = Pr(TH < t). Since, otherwise, the HFT arrives immediately at Th

and snipes the stale quotes. Therefore, Pr(Liq. trade at t) = βe−ψt + βe−(β+γ)t ∫ t
0 φe−φτdτ = βe−(β+γ)t.
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Corollary 1. θ affects s0 and sλ in an opposite way, that is,

∂s0

∂θ
< 0,

∂sλ

∂θ
> 0.

With φ fixed, s0 is decreasing in θ, while sλ is increasing in θ. For market makers in the fast
market, a higher θ (i.e., the probability of A = 2) implies that the fast market is more likely to be
protected by the speed bump in the slow market due to the HFT’s “wait-and-grasp-all” strategy.
This mitigates the adverse selection risk for the market makers in the fast market, making s0 lower.

On the other hand, a higher θ (or φθ) has a negative impact on market makers in the slow market.
This is because a higher probability of A = 2 reduces the chance for market makers to observe
sniping activity in the fast market to cancel the quote. Thus, a higher θ exposes the slow market to
more severe adverse selection and pushes the spread sλ up.

Now, the (mixed) strategy is characterized by the following, in which θ must satisfy the indiffer-
ence condition, w1 = w2.

Proposition 10. The optimal trading strategy for the HFT is

θ =


0 if λQ(β + γ) > φ+β

β ,

θ∗ ∈ [0, 1] if λQ(β + γ) ∈ [1, φ+β
β ],

1 if λQ(β + γ) < 1,

(20)

with

θ∗ =
(φ + β)− β(β + γ)Qλ

1 + λQ(β + γ)− βλ(1− ληQ)

1 + λη

φ
. (21)

Proof. See Appendix B.6. �

With φ fixed, the strategy θ of the HFT in the second stage game crucially depends on (i) the
expected length of delay λ and (ii) the share of the slow market q. As proposed by (20), a higher λ
and smaller q make the HFT reluctant to take A = 2 because both negatively impact the expected
profit of A = 2 by imposing a higher execution risk and lower profit in the slow market, respectively.
Thus, as λ or Q increases, θ∗ declines and converges to 0. On the other hand, the HFT sticks to the
strategy A = 2 (i.e., θ → 1) when λ or Q is sufficiently small.

A higher speed φ has two effects on the behavior of θ∗. First, it is straightforward that a higher φ
widens the region for θ = θ∗ ∈ (0, 1). Also, under the mixed strategy, we have the following:

Corollary 2. Ceteris paribus, ∂θ∗

∂φ > 0.

When the HFT becomes faster, the spreads in the fast and slow markets are differently affected.
Since the slow market is more likely to be protected by the speed bump, a higher φ has a stronger
effect on s0 than sλ. Moreover, as mentioned earlier, the slow market will face the HFT only if she
takes A = 2 with probability θ. Hence, as we can see from (19), the effect of φ on sλ is discounted
by θ (i.e., φ affects sλ via φθ). Thus, when φ is high, the profit from the fast market shrinks more
compared to the profit from the slow market. This induces the stronger incentive for the HFT to
shift her priority towards the gain from the slow markets. Therefore, she tends to refrain from taking
A = 1, and θ increases.

A.2.5 Strategic Speed Choice

Given the equilibrium in the trading stage, the HFT decides her speed level. Her objective function
is denoted by

W(φ) =
∫ ∞

0
φe−ψtwA(φ)dt
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subject to

wA(φ) =

{
w1(t) = (1− q)(σ− s0(φ, θ)) if θ ∈ [0, 1)

w2(t) = Eδ

[
e−(β+γ)δ(σ− sλ(φ, θ))

]
if θ = 1,

(22)

the spreads in (19) as functions of (φ, θ), and the equilibrium strategy θ given by (20). Note that the
mixed strategy θ∗ ∈ (0, 1) makes it indifferent for the HFT to take A = 1 and A = 2, leading to the
first line in (22). Furthermore, when θ = 1, the economy converges to the benchmark case since the
effect of the speed bump in the slow market encompasses the fast market too. Thus, s0 = sλ, and we
obtain w2 in (22).

A.2.6 Short expected delay

As we have established in (20), a sufficiently short expected delay, such that λ < (β + γ)−1Q−1,
does not hamper the incentive of the HFT to take A = 2. She always takes “wait-and-grasp-all”
strategy, resulting in θ = 1. This makes the economy, as well as the equilibrium results, same as the
benchmark case in Section 2. Therefore, a longer expected speed bump increases the speed level φ∗,
which completely offsets the reduction in the adverse selection cost due to the longer safe interval
(Proposition 3). This region is depicted by the left region of the shaded area in Figure IX.

A.2.7 Long expected delay

When a delay is sufficiently long, the HFT becomes reluctant to take A = 2 because of the higher
execution risk. She starts adopting the mixed strategy (θ = θ∗) or immediately snipes in the fast
market (θ = 0). The switch between these two cases occurs at

φ̂ ≡ β [λ(β + γ)Q− 1] . (23)

When φ < φ̂ (resp. φ > φ̂), the strategy of the HFT is θ = 0 (resp. θ = θ∗). As we have discussed, this
threshold is increasing in λ and decreasing in q since both of them reduce the expected profit from
sniping in the slow market.

Lemma 4. When θ = 0, the optimal speed level is given by φ∗0 =
√

β(β + γ). The speed and the spread are
independent of the expected length of the speed bump λ.

Proof. Plugging θ = 0 into (22) and taking derivative immediately derive the result. �

Since the objective function W switches at φ̂, we have a couple of candidates for φ∗ depending
on φ̂ ≷ φ∗0 , and this is crucially affected by the values of λ and Q.

Figure VIII plots the objective function W against φ with various parameter values for λ, in which
the effect of φ on θ is taken into account. This function is not smooth due to the switch at φ = φ̂.
When λ is relatively small, we have θ = θ∗ ∈ (0, 1), and the optimal φ is higher than φ̂. Then the
speed is positively affected by λ, i.e., the longer the expected delay, the faster the HFT. As shown by
Corollary 2, this pushes θ∗ up. However, because the longer expected delay escalates the execution
risk and the expected return starts waining, W(θ∗) dips below W(θ = 0) at some λ. Thus, there is a
λ that makes θ = θ∗ and θ = 0 indifferent.

As a result, the optimal speed plummets as λ increases when θ switches from θ = θ∗ to θ = 0.
Intuitively, the optimal speed must incorporate the execution risk by the speed bump only if the
HFT snipes in the slow market with a strictly positive probability. Otherwise (if θ = 0), the speed
bump has nothing to do with the HFT’s expected profit. The speed decision cares only about the
endogenous cost at the fast market, which is more sensitive to the change in φ compared to the
endogenous cost that stems from the slow market. As a result, the optimal speed with θ = θ∗ is too
fast if θ = 0 is the optimal strategy, leading to a dive of φ∗ at the switch. See Figure IX for the visual
illustration of the effect of λ.
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Figure VIII: W(φ) with different λ

Figure IX: Effect of λ

A.2.8 Adverse Selection Cost

Figure IX shows the level of the optimal speed φ∗, the mixed strategy θ∗, and the spreads in both
markets as functions of λ. First, if the delay is sufficiently small, so that λQ(β+γ) < 1, the execution
risk for the HFT is sufficiently low, and she takes A = 2 for sure (θ∗ = 1). The result is the same as
Section 2, and the optimal speed is increasing in λ, while the adverse selection cost, measured by the
half spread, is constant. Note that there is no difference between the slow and the fast markets.

Second, if λQ(β + γ) > 1 but λ is intermediate, the HFT finds it not attractive to take A = 2 with
100% probability because of the relatively high execution risk. Thus, she starts to mix A = 2 with
A = 1, so that she stochastically snipes at the timing of information revelation. This is represented by
the shaded area in Figure IX. In this case, if she keeps φ constant, the welfare declines as λ increases.
However, a longer expected delay makes the endogenous cost (i.e., the spread) insensitive to an
increase in the speed because market makers set s as if the HFT arrives with a lower probability.
This promotes the investment in the speed. In contrast to the speed, the probability of taking A = 2
declines, although a higher φ∗ has a positive impact on θ∗. This is due to the dominating negative
effect of λ on θ∗: a longer expected delay makes A = 2 a less attractive choice for the HFT.

Finally, if λ becomes sufficiently large, as in the right region of the shaded area, the HFT no longer
figures that taking A = 2 pays out because the execution risk becomes sufficiently high. Thus, she
switches to taking A = 1 with 100% probability, making the optimal level of the speed insensitive
to λ. The optimal level φ∗ jumps down from the middle region of λ as mentioned in the previous
subsection.

Regarding the adverse selection cost in both markets, the first region with a small λ provides the
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constant and same level of s. This is natural because both markets face the same risk of the HFT
arrival. The intermediate region of λ makes them behave differently. A higher λ directly mitigates
adverse selection for market makers, while it increases the optimal speed and the probability of
the HFT-confrontation. The fast market bears the risk of the HFT no matter what strategy the HFT
takes, though A = 2 is discounted by the delay λ. On the other hand, the slow markets are exposed
to the HFT only if she takes A = 2, and this is protected by λ. As shown by Corollary 1, this
asymmetry makes sλ decreasing and s0 increasing—a longer speed bump protects the slow markets
at the expense of the traditional fast markets.

Once the delay becomes sufficiently long (right side of the shaded area), the risk of HFT com-
pletely diminishes in the slow market because the HFT takes A = 1 for sure. Hence sλ = 0. In the
fast market, the spread drops as well because the speed of the HFT is humbled. The fast market still
bears the risk of the HFT and keeps the spread strictly positive.

B Appendix: Proofs

B.1 Proof of Lemma 2 and Proposition 2
Let η ≡ β + γ. The explicit formula for W is given by

W(φ) =
1

1 + λη

φ

ψ

β (1 + λψ)

φ + β (1 + λψ)
,

where

p ≡ Eδ

[∫ ∞

0
πt(φ, δ)dt

]
=

1
1 + λη

φ

ψ
,

σ− s =
β (1 + λψ)

φ + β (1 + λψ)
.

Therefore,

W ′(φ) = p′(σ− s) + p(σ− s)′

= p′(σ− s)(1− ε)

with

ε ≡ − p
p′
(σ− s)′

σ− s
=

(1 + λη)ψ

η(1 + λψ)

φ

φ + β (1 + λψ)
.

It is obvious that dε/dφ > 0. This implies that the optimization problem satisfies the SOC.
The solution is derived by solving the FOC, which is reduced to

1 = ε(φ).

Note that ε(0) = 0, ε′(φ) > 0, and

lim
φ→∞

ε(φ) =
1 + λη

ηλ(1 + β)
.

Thus, as long as limφ→∞ ε(φ) > 1, there is a unique solution. We can easily check that this condition
is expressed as (5). If this is not satisfied, we have φ∗ = ∞.

When (5) holds, the φ∗ > 0 solves 1 = ε(φ), and some tedious calculations show that the solution
is given by (8). The second statement is obvious from (8).
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B.2 Proof of Proposition 3
By taking a derivative, we have

ds
dλ
∼ −φψ +

dφ

dλ
(1 + λη). (24)

Moreover, by the implicit function theorem,

dφ

dλ
=

ηg2 − φ2γ

ηg2 + βψ2(1 + ηλ)2 (25)

where g ≡ φ + β(1 + λψ). By substituting (25) for the one in (24),

ds
dλ
∼ ψβ(1 + λη)(1 + λψ)− φg

= ηβ(1 + λψ)2 − φ2.

Therefore, at the optimal speed φ∗ =
√

η(1+λη)

1−λ
√

βη
, we have ds/dλ = 0.

B.3 Proof of Lemma 3 and Proposition 5
Let r ≡

√
β + φj. The second order derivative of BRi is

d2BRi(φj)

dφ2
j

=
dr
dφj

R
2r2

(
r

R′

R
− 1
)

,

with

R ≡ 1 + λr2

(1− λ
√

βr)2
+

2λr
1− λ

√
βr

.

We can check that r R′
R > 1 is identical to Z(r) < 0 with

Z(r) ≡ 2βλ3r3 − λ(1 + λ
√

β)r2 − λ
√

β(3 + 2λ)r + 1.

Note that we are focusing on the bounded solution, that is 1 > λ
√

βr. Since Z( 1
λ
√

β
) < 0 and

Z(0) > 0, there is a unique r∗ such that r > r∗ ⇔ Z(r) < 0. Then, we can define φ0 be the solution of
r = r∗ and obtain the result.

The symmetric equilibrium is given by solving φ = BR(φ), which is rewritten as X(r, λ) = 0
with r ≡

√
β + φ and

X(r, λ) = λ(1 +
√

β)r3 − r2 + (1− λβ
√

β)r + β.

This function has the following properties:

∂X(r, λ)

∂λ
> 0, ∀r > 0,

X(r, 0) = −r2 + r + β, lim
λ→∞

X(r, λ) = ∞.

Therefore, as λ increases, X shifts up from X(r, 0) and eventually explodes for all r. At λ = 0, X = 0
has a unique solution in the positive r region. By the continuity of X regarding λ, if λ ↘ 0, then
X = 0 attains three solutions, two in the positive region (a larger one can be greater than 1

λ
√

β
).

Let r+ and r− be these two solutions. Since ∂X(r+,λ)
∂r > 0 and ∂X(r−,λ)

∂r < 0, the implicit function
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theorem implies dr+
dλ < 0 and dr−

dλ > 0, which means that the stable solution is increasing in λ. By the
monotonicity of X regarding λ, there is a unique λ = λ0 such that r−(λ0) = r+(λ0), and X(r, λ) > 0
for all r if λ > λ0, i.e., there are no solutions.

B.4 Proof of Proposition 6
First, by letting ψ ≡ ∑i φi + β and η ≡ φj + β, the FOC for HFT i can be expressed as

1 =
φi

φi + β(1 + λψ)

Y(ψ)
Y(η)

,

with
Y(x) =

x
1 + λx

.

Under the symmetric equilibrium, it reduces to

1 = s(φ, λ)
Y(ψ)
Y(η)

,

with ψ ≡ 2φ + β, η ≡ φ + β, and φ is the equilibrium speed. We can check that

ds
dλ
∼ φψ[ψ(1 + λψ)− 2η(1 + λη)]− ληφψ(1 + λβ). (26)

Since the symmetric equilibrium solves

φ2 = βη(1 + λψ)2,

we know that φ =
√

βη(1 + λψ) ≥ β ≥ 1. By using these conditions, we can check that the RHS of
26 is positive.

B.5 Proof of Proposition 7
First of all, the traditional model satisfies the SOC: By letting Γ ≡ φi + β(1 + λψ),

dwi

dφi
= (σ− s)

∂2πi

∂φ2
i
+

∂(σ− s)
∂φi

∂πi

∂φi

∼ −Γβ(1 + λψ)− ψ(Γ− φi(1 + βλ))

< 0.

Then, the FOC to solve is

cφi =
β

ψΓ
Y(η)
Y(ψ)

≡ K(φi, φj, λ), (27)

with ψ ≡ ∑i φi + β and η ≡ φj + β. We can easily check that the RHS of (27) is decreasing in φi.
Since K is decreasing in φj and λ around the symmetric equilibrium, we can prove that dBRi

dφj
< 0 and

dφ
dλ < 0. Since the form of the equilibrium spread is identical to the strategic model, the opposite
effect of dφ

dλ in Proposition 6 shows that ds
dλ < 0.

B.6 Proof of Proposition 10
The comparison is

w1 ≷ w2 ⇔ ληQ(σ− s0) ≷ σ− sλ.
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By plugging the formulae for the equilibrium spreads into the inequality above,

L(θ) ≡ ληQ(σ− s0) = ληQ
K(θ)

φ + βK(θ)
,

R(θ) ≡ σ− sλ =
J(θ)

φ + βJ(θ)
,

with

K(θ) = 1 +
ψ

η
θ

λη

1 + (1− θ)λη
, J(θ) = 1 + λη

(
1− θ + θ

ψ

η

)
.

These functions have the following properties:

dL
dθ

> 0, L(0) =
ληQ
φ + β

, L(1) =
ληQ(1 + λψ)

φ + β(1 + λψ)
,

dR
dθ

< 0, R(0) = β−1, R(1) =
1 + λψ

φ + β(1 + λψ)
.

Thus, if ληQ < 1, we have L(1) < R(1), indicating that R > L for all θ ∈ [0, 1]. Therefore, θ∗ = 1
is the optimal. When ληQ ≥ 1, the result depends on L(0) ≷ R(0). If ληQ < (β + φ)/β, then R(0) >
L(0), which implies that there is a unique interior solution θ∗ that solves the indifference condition.
The solution solves L(θ) = R(θ), and tedious calculation gives (21). Finally, if ληQ > (β + φ)/β, we
have R < L for all θ ∈ [0, 1]. Thus, θ = 1 is the optimal strategy.
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